已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、G、H、P、Q.(1)若四边形ABCD如图1,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”)-数学

题文

已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、G、H、P、Q.
(1)若四边形ABCD如图1,判断下列结论是否正确(正确的在括号里填“√”,

错误的在括号里填“×”).
甲:顺次连接EF、FG、GH、HE一定得到平行四边形;(  )
乙:顺次连接EQ、QG、GP、PE一定得到平行四边形.(  )
(2)请选择甲、乙中的一个,证明你对它的判断.
(3)若四边形ABCD如图2,请你判断(1)中的两个结论是否成立?
题型:解答题  难度:中档

答案



(1)甲√;乙√.

(2)证明:(1)中对甲的判断:
连接EF、FG、GH、HE.
∵E、F分别是AB、BC的中点,
∴EF∥AC,EF=
1
2
AC.
同理,得HG∥AC,HG=
1
2
AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形.

(3)类似于(1)中的结论(甲、乙都成立)和证明.

据专家权威分析,试题“已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是..”主要考查你对  三角形中位线定理,平行四边形的判定,矩形,矩形的性质,矩形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理平行四边形的判定矩形,矩形的性质,矩形的判定

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:平行四边形的判定

  • 平行四边形的判定:
    (1)定义:两组对边分别平行的四边形是平行四边形;
    (2)定理1:两组对角分别相等的四边形是平行四边形;
    (3)定理2:两组对边分别相等的四边形是平行四边形;
    (4)定理3:对角线互相平分的四边形是平行四边形
    (5)定理4:一组对边平行且相等的四边形是平行四边形。
    平行四边形的面积:S=底×高。

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

  • 矩形的性质:
    1.矩形的4个内角都是直角;
    2.矩形的对角线相等且互相平分;
    3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
    4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
    5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
    6.顺次连接矩形各边中点得到的四边形是菱形

  • 矩形的判定
    ①定义:有一个角是直角的平行四边形是矩形
    ②定理1:有三个角是直角的四边形是矩形
    ③定理2:对角线相等的平行四边形是矩形
    ④对角线互相平分且相等的四边形是矩形
    矩形的面积:S矩形=长×宽=ab。

  • 黄金矩形:
    宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
    黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐