下列命题错误的是()A.四边形内角和等于外角和B.相似多边形的面积比等于相似比C.点P(1,2)关于原点对称的点的坐标为(-1,-2)D.三角形的中位线平行于第三边,且等于第三边的一-数学

题文

下列命题错误的是(  )
A.四边形内角和等于外角和
B.相似多边形的面积比等于相似比
C.点P(1,2)关于原点对称的点的坐标为(-1,-2)
D.三角形的中位线平行于第三边,且等于第三边的一半
题型:单选题  难度:中档

答案

A、四边形的内角和和外角和都是360°,正确;
B、相似多边形的面积比等于相似比的平方,错误;
C、点关于原点对称的点的横纵坐标均变为原来的相反数,故正确;
D、根据三角形中位线定理可知,D选项正确,故正确.
故选B.

据专家权威分析,试题“下列命题错误的是()A.四边形内角和等于外角和B.相似多边形的面积..”主要考查你对  三角形中位线定理,关于原点对称的点的坐标,相似多边形的性质,多边形的内角和和外角和,命题,定理  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理关于原点对称的点的坐标相似多边形的性质多边形的内角和和外角和命题,定理

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:关于原点对称的点的坐标

  • 关于原点对称的点的坐标的特点是:横纵坐标都互为相反数。
    ①关于X轴对称的点的坐标横坐标不变,纵坐标互为相反数。
    ②关于Y轴对称的点的坐标横坐标互为相反数,纵坐标不变。

考点名称:相似多边形的性质

  • 相似多边形:
    如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。(或相似系数)
    判定:
    如果对应角相等,对应边成比例的多边形是相似多边形.
    如果所有对应边成比例,那么这两个多边形相似

  • 相似多边形的性质:
    相似多边形的性质定理1:相似多边形周长比等于相似比。
    相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。
    相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
    相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。
    相似多边形的性质定理5:若相似比为1,则全等。
    相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。
    相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。
    相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。

考点名称:多边形的内角和和外角和

  • 在平面内,由若干不在同一直线上的线段首尾顺次连接组成的封闭图形叫做多边形。
    对角线:在多边形中,连接不相邻的两个顶点的线段叫做多边形的对角线。
    外角:多边形的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
    如图示:

    多边形的内角和:
    n边形的内角和等于(n-2)·180°。(多边形内角和定理)
    多边形的外角和:
    在多边形的每个顶点处取多边形的一个外角,它们的和叫做多边形的外角和。
    多边形的外角和等于360°。(与边数无关) (多边形的外角和定理)

  • 多边形外角和列举:

考点名称:命题,定理

  • 命题的概念:
    判断一件事情的语句,叫做命题。
    命题的概念包括两层含义:
    (1)命题必须是个完整的句子;
    (2)这个句子必须对某件事情做出判断。

    公理:
    人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

    定理:
    通过真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理。
    一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。
    如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。
    在命题逻辑中,所有已证明的叙述都称为定理。

    经过长期实践后公认为正确的命题叫做公理,用推理的方法判断为正确的命题叫做定理。

  • 命题的分类:
    (按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题),
    所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
    所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

    四种命题:
    1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
    2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
    3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐