如图,已知点M,N,P,Q分别是凸四边形ABCD四边的中点,在下列4个命题中:①四边形MNPQ是梯形;②当四边形ABCD的对角线相等时,四边形MNPQ是菱形;③当四边形ABCD的对角线垂直时-数学

题文

如图,已知点M,N,P,Q分别是凸四边形ABCD四边的中点,在下列4个命题中:
①四边形MNPQ是梯形;
②当四边形ABCD的对角线相等时,四边形MNPQ是菱形;
③当四边形ABCD的对角线垂直时,四边形MNPQ是矩形;
④当四边形ABCD的对角线相等且垂直时,四边形MNPQ是正方形.
正确的有(  )
A.1个B.2个C.3个D.4个

题型:单选题  难度:中档

答案

如图,连接AC、BD,
∵点M,N,P,Q分别是凸四边形ABCD四边的中点,
∴MN∥AC,MN=
1
2
AC,PQ∥AC,PQ=
1
2
AC,
∴MN∥PQ,MN=PQ,
∴四边形MNPQ是平行四边形,故①小题错误;
当四边形ABCD的对角线相等时,同理可得NP=MQ=
1
2
BD,
所以,MN=NP=PQ=MQ,
所以,四边形MNPQ是菱形,故②小题正确;
当四边形ABCD的对角线垂直时,可以证明∠M=90°,
所以,四边形MNPQ是矩形,故③小题正确;
当四边形ABCD的对角线相等且垂直时,四边形MNPQ既是菱形也是矩形,所以是正方形,故④小题正确,
综上所述,正确的是②③④共3个.
故选C.

据专家权威分析,试题“如图,已知点M,N,P,Q分别是凸四边形ABCD四边的中点,在下列4个..”主要考查你对  三角形中位线定理  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐