如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1;(2)AB边上的高为3;(3)△CDE∽△CAB;(4)△CDE的面积与△CAB面积之比为1:4.其中正确的有()A.1个B.2-数学

题文

如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:
(1)DE=1;
(2)AB边上的高为

3

(3)△CDE∽△CAB;
(4)△CDE的面积与△CAB面积之比为1:4.
其中正确的有(  )
A.1个B.2个C.3个D.4个

题型:单选题  难度:偏易

答案

∵DE是它的中位线,∴DE=
1
2
AB=1,故(1)正确,
∴DE∥AB,∴△CDE∽△CAB,故(3)正确,
∴S△CDE:S△CAB=DE2:AB2=1:4,故(4)正确,
∵等边三角形的高=边长×sin60°=2×

3
2
=

3
,故(2)正确.
故选D.

据专家权威分析,试题“如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个..”主要考查你对  三角形中位线定理  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐