如图所示.△ABC中,∠B,∠C的平分线BE,CF相交于O,AG⊥BE于G,AH⊥CF于H.(1)求证:GH∥BC;(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH.-数学

题文

如图所示.△ABC中,∠B,∠C的平分线BE,CF相交于O,AG⊥BE于G,AH⊥CF于H.
(1)求证:GH∥BC;
(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH.
题型:解答题  难度:中档

答案

(1)证明:分别延长AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以△ABG≌△MBG(ASA).
从而,G是AM的中点.同理可证△ACH≌△NCH(ASA),
从而,H是AN的中点.所以GH是△AMN的中位线,从而,HG∥MN,即HG∥BC.

(2)由(1)知,△ABG≌△MBG及△ACH≌△NCH,
所以AB=BM=9厘米,AC=CN=14厘米.
又BC=18厘米,
所以BN=BC-CN=18-14=4(厘米),
MC=BC-BM=18-9=9(厘米).
从而MN=18-4-9=5(厘米),
∴GH=
1
2
MN=
5
2
cm.

据专家权威分析,试题“如图所示.△ABC中,∠B,∠C的平分线BE,CF相交于O,AG⊥BE于G,AH⊥C..”主要考查你对  三角形中位线定理  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐