如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是[]A、a<bB、a=bC、a>bD、ab>0-九年级数学

首页 > 考试 > 数学 > 初中数学 > 实数的比较大小/2019-02-21 / 加入收藏 / 阅读 [打印]

题文

如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是

[     ]

A、a<b
B、a=b
C、a>b
D、ab>0
题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是[]A、..”主要考查你对  实数的比较大小,数轴  等考点的理解。关于这些考点的“档案”如下:

实数的比较大小数轴

考点名称:实数的比较大小

  • 实数的比较大小法则:
    正实数都大于0,负实数都小于0;
    正实数大于一切负实数,两个负实数绝对值大的反而小;
    在数轴上,右边的数要比左边的大。

  • 实数比较大小的具体方法:
    (1)求差法:
    设a,b为任意两个实数,先求出a与b的差,再根据
    “当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b”来比较a与b的大小。
    (2)求商法:
    设a,b(b≠0)为任意两个正实数,先求出a与b的商,再根据
    “当<1时,a<b;当=1时,a=b;当>1时,a>b”来比较a与b的大小;
    当a,b(b≠0)为任意两个负实数时,再根据
    “当<1时,a>b;当=1时,a=b;当>1时,a<b” 来比较a与b的大小。
    (3)倒数法:
    设a,b(a≠0,b≠0)为任意两个正实数,先分别求出a与b的倒数,再根据
    “当<时,a>b;当>时,a<b。”来比较a与b的大小。
    (4)平方法:
    比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据
    “在a>0,b>0时,可由a2>b2 得到a>b”比较大小。
    也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
    还有估算法、近似值法等。
    两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
    (5)数轴比较法:
    实数与数轴上的点一一对应。
    利用这条性质,将实数的大小关系转化为点的位置关系。
    设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
    如图,点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
    从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
    从原点向左,用类似的方法依次表示-1,-2,-3,…。

  • 数轴的应用范畴:
    符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
    在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐