比较大小,用“<”“>”或“=”连接:(1)﹣()﹣;(2)﹣3.14()﹣|﹣π|.-七年级数学
题文
比较大小,用“<”“>”或“=”连接: (1)﹣( )﹣;(2)﹣3.14( )﹣|﹣π|. |
答案
(1)>;(2)> |
据专家权威分析,试题“比较大小,用“<”“>”或“=”连接:(1)﹣()﹣;(2)﹣3.14()﹣|﹣π..”主要考查你对 实数的比较大小,比较有理数的大小 等考点的理解。关于这些考点的“档案”如下:
实数的比较大小比较有理数的大小
考点名称:实数的比较大小
- 实数的比较大小法则:
正实数都大于0,负实数都小于0;
正实数大于一切负实数,两个负实数绝对值大的反而小;
在数轴上,右边的数要比左边的大。 - 实数比较大小的具体方法:
(1)求差法:
设a,b为任意两个实数,先求出a与b的差,再根据
“当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b”来比较a与b的大小。
(2)求商法:
设a,b(b≠0)为任意两个正实数,先求出a与b的商,再根据
“当<1时,a<b;当=1时,a=b;当>1时,a>b”来比较a与b的大小;
当a,b(b≠0)为任意两个负实数时,再根据
“当<1时,a>b;当=1时,a=b;当>1时,a<b” 来比较a与b的大小。
(3)倒数法:
设a,b(a≠0,b≠0)为任意两个正实数,先分别求出a与b的倒数,再根据
“当<时,a>b;当>时,a<b。”来比较a与b的大小。
(4)平方法:
比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据
“在a>0,b>0时,可由a2>b2 得到a>b”比较大小。
也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
还有估算法、近似值法等。
两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
(5)数轴比较法:
实数与数轴上的点一一对应。
利用这条性质,将实数的大小关系转化为点的位置关系。
设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
如图,点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.
考点名称:比较有理数的大小
- 比较有理数大小的方法:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
数轴法:
1、在数轴上表示的两个数,右边的总比左边的数大。
2、正数都大于零,负数都小于零,正数大于负数。
绝对值法:
1、两个正数比较大小,绝对值大的数大;
2、两个负数比较大小,绝对值大的数反而小。
差值法:
设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b<0则a<b
商值比较法:
设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a<b
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |