a是一个无理数,且满足3<a<4,则a可能是()A.2B.21C.38D.11-数学

首页 > 考试 > 数学 > 初中数学 > 实数的比较大小/2019-02-21 / 加入收藏 / 阅读 [打印]

题文

a是一个无理数,且满足3<a<4,则a可能是(  )
A.

2
B.

21
C.
38

D.

11
题型:单选题  难度:偏易

答案

∵a满足3<a<4,
设a=

b
(b>0).则9<b<16,
∴b可以取10、11、12、13、14、15,;
∴只有D符合.
故选:D.

据专家权威分析,试题“a是一个无理数,且满足3<a<4,则a可能是()A.2B.21C.38D.11-数学-..”主要考查你对  实数的比较大小,无理数的定义,估算无理数的大小  等考点的理解。关于这些考点的“档案”如下:

实数的比较大小无理数的定义估算无理数的大小

考点名称:实数的比较大小

  • 实数的比较大小法则:
    正实数都大于0,负实数都小于0;
    正实数大于一切负实数,两个负实数绝对值大的反而小;
    在数轴上,右边的数要比左边的大。

  • 实数比较大小的具体方法:
    (1)求差法:
    设a,b为任意两个实数,先求出a与b的差,再根据
    “当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b”来比较a与b的大小。
    (2)求商法:
    设a,b(b≠0)为任意两个正实数,先求出a与b的商,再根据
    “当<1时,a<b;当=1时,a=b;当>1时,a>b”来比较a与b的大小;
    当a,b(b≠0)为任意两个负实数时,再根据
    “当<1时,a>b;当=1时,a=b;当>1时,a<b” 来比较a与b的大小。
    (3)倒数法:
    设a,b(a≠0,b≠0)为任意两个正实数,先分别求出a与b的倒数,再根据
    “当<时,a>b;当>时,a<b。”来比较a与b的大小。
    (4)平方法:
    比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据
    “在a>0,b>0时,可由a2>b2 得到a>b”比较大小。
    也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
    还有估算法、近似值法等。
    两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
    (5)数轴比较法:
    实数与数轴上的点一一对应。
    利用这条性质,将实数的大小关系转化为点的位置关系。
    设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
    如图,点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.

考点名称:无理数的定义

  • 无理数定义:
    即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。
    无理数是无限不循环小数。如圆周率π、等。

  • 无理数性质:
    无限不循环的小数就是无理数 。换句话说,就是不可以化为整数或者整数比的数 
    性质1 无理数加(减)无理数既可以是无理数又可以是有理数 
    性质2 无理数乘(除)无理数既可以是无理数又可以是有理数 
    性质3 无理数加(减)有理数一定是无理数 
    性质4 无理数乘(除)一个非0有理数一定是无理数

  • 无理数与有理数的区别:
    1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,
    比如:4=4.0,=0.8,=0.33333……
    而无理数只能写成无限不循环小数,
    比如:=1.414213562…………
    根据这一点,人们把无理数定义为无限不循环小数;
    2、所有的有理数都可以写成两个整数之比,而无理数不能。根据这一点,有人建议给无理数摘掉,把有理数改叫为“比数”,把无理数改叫为“非比数”。

  • 无理数的识别:
    判断一个数是不是无理数,关键就看它能不能写出无限不循环小数,而把无理数写成无限不循环小数,不但麻烦,而且还是我们利用现有知识无法解决的难题。
    初中常见的无理数有三种类型:
    (1)含根号且开方开不尽的方根,但切不可认为带根号的数都是无理数;
    (2)化简后含π的式子;
    (3)不循环的无限小数。
    掌握常见无理数的类型有助于识别无理数。

  • 无理数的历史:
    毕达哥拉斯(Pythagqras,约公元前885年至公元前400年间)是古希腊的大数学家。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”的观点,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。在他死后大约200年,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。
    公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒,于是希伯索斯被残忍地扔进了大海。
    希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。