下列说法中正确的是()A.9是一个无理数B.函数y=x+12的自变量的取值范围是x>-1C.若点P(2,a)和点Q(b,-3)关于x轴对称,则a-b的值为1D.-8的立方根是2-数学

首页 > 考试 > 数学 > 初中数学 > 无理数的定义/2019-02-21 / 加入收藏 / 阅读 [打印]

如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
③立方和开立方运算,互为逆运算。
④互为相反数的两个数的立方根也是互为相反数。
⑤负数不能开平方,但能开立方。
⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。
⑦当两个数相等时,这两个数的平方根相等,反之亦然。

  • 平方根和立方根的关系:
    区别:
    ⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
    ⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。
    ⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。
    联系:
    二者都是与乘方运算互为逆运算
    在部分科学计算器上面需要按SHIFT键+x3才可以打出来根号。

  • 笔算开立方的方法:
    方法一
    1.将被开立方数的整数部分从个位起向左每三位分为一组;
    2.根据最左边一组,求得立方根的最高位数;
    3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
    4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
    5.用同样方法继续进行下去。
    方法二
    第1、2步同上。
    第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;
    第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。
    然后重复第3、4步,直到除尽。

  • 考点名称:算术平方根

    • 概念:
      若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
      规定:0的算术平方根是0。
      表示:a的算术平方根记为,读作“根号a”。
      注:只有非负数有算术平方根,而且只有一个算术平方根。

    • 平方根和算术平方根的区别与联系:
      区别:
      (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
      (2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
      (3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为
      (4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
      联系:
      (1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
      (2)存在条件相同:只有非负数才有平方根和算术平方根。
      (3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
      注:
      (1)平方和开平方的关系是互为逆运算;
      (2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
      (3)开方的方式是根号形式。

    •  

    • 电脑根号的打法:
      比较通用:
      左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
      运用Word的域命令在Word中根号:
      首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
      1.平方根
      一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
      2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
      算术平方根是定义在平方根基础上,因此负数没有算术平方根。
      3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。

    考点名称:用坐标表示轴对称

    • 用坐标表示轴对称:
      关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;
      关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变。

      点(x, y)关于x轴对称的点的坐标为x,-y ,
      点(x, y)关于y轴对称的点的坐标为-x,y

      例如图中:
      点A(2,3)关于x轴对称的点的坐标为A,,(-2,3);
      点A(2,3)关于x轴对称的点的坐标为A,(2,3)。

    • 点拨:
      ①写出平面坐标系中一个点关于x轴和y轴对称的点的坐标:
      关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等。
      ②画出一个图形关于x轴或y轴对称:
      先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。