已知四个命题:①1是1的平方根,②负数没有立方根,③无限小数不一定是无理数,④-3a一定没有意义;其中正确的命题有______个.-数学

首页 > 考试 > 数学 > 初中数学 > 无理数的定义/2019-02-21 / 加入收藏 / 阅读 [打印]

平方根定义:
如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。

  • 性质:
    ①一个正数如果有平方根,那么必定有两个,它们互为相反数。
    显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

    ②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
    的算术平方根记为,读作“根号a”,a叫做被开方数。

    ③规定:0的平方根是0。

    ④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
    例如:-1的平方根为±1,-9的平方根为±3。

    ⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
    平方根和算术平方根都只有非负数才有。
    被开方数是乘方运算里的幂。
    求平方根可通过逆运算平方来求。
    开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
    若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x

  • 1 至 20 的平方根:
    利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
    =1
    ≈1.414213562373095048801688724209698078569671875376948073176679737990732478462
    ≈1.732050807568877293527446341505872366942805253810380628055806979451933016909
    =2
    ≈2.236067977499789696409173668731276235440618359611525724270897245410520925638
    ≈2.449489742783178098197284074705891391965947480656670128432692567250960377457
    ≈2.645751311064590590501615753639260425710259183082450180368334459201068823230
    ≈2.828427124746190097603377448419396157139343750753896146353359475981464956924
    =3
    ≈3.162277660168379331998893544432718533719555139325216826857504852792594438639
    ≈3.316624790355399849114932736670686683927088545589353597058682146116484642609
    ≈3.464101615137754587054892683011744733885610507620761256111613958903866033818
    ≈3.605551275463989293119221267470495946251296573845246212710453056227166948293
    ≈3.741657386773941385583748732316549301756019807778726946303745467320035156307
    ≈3.872983346207416885179265399782399610832921705291590826587573766113483091937
    ≈4
    ≈4.123105625617660549821409855974077025147199225373620434398633573094954346338
    ≈4.242640687119285146405066172629094235709015626130844219530039213972197435386
    ≈4.358898943540673552236981983859615659137003925232444936890344138159557328203
    ≈4.472135954999579392818347337462552470881236719223051448541794490821041851276

    其中,有两数的根号可借由“口诀”记忆: (意思意思而已), (一妻三儿、一起散热)。

  • 考点名称:立方根

    • 定义:
      一般地,如果一个数x的立方等于a,那么这个x叫做a的立方根。
      如果一个数x的立方等于a,即x的三次方等于a(x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根。
      数a的立方根记作,读作“三次根号a”。
      读作:“三次根号a”其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。

    • 开立方:求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。
      立方根性质
      ①正数的立方根是正数;负数的立方根是负数;0的立方根是0。
      ②一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(也叫做三次方根)。
      也就是说,如果x3=a,那么x叫做a的立方根。
      如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
      ③立方和开立方运算,互为逆运算。
      ④互为相反数的两个数的立方根也是互为相反数。
      ⑤负数不能开平方,但能开立方。
      ⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。
      ⑦当两个数相等时,这两个数的平方根相等,反之亦然。

    • 平方根和立方根的关系:
      区别:
      ⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
      ⑵ 被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。
      ⑶ 结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。
      联系:
      二者都是与乘方运算互为逆运算
      在部分科学计算器上面需要按SHIFT键+x3才可以打出来根号。

    • 笔算开立方的方法:
      方法一
      1.将被开立方数的整数部分从个位起向左每三位分为一组;
      2.根据最左边一组,求得立方根的最高位数;
      3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
      4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
      5.用同样方法继续进行下去。
      方法二
      第1、2步同上。
      第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;
      第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。
      然后重复第3、4步,直到除尽。