下列语句正确的是[]A.正数和负数统称有理数B.近似数0.010精确到百分位C.若a、b互为倒数,则ab=1D.代数式是整式-七年级数学
题文
下列语句正确的是 |
[ ] |
A.正数和负数统称有理数 B.近似数0.010精确到百分位 C.若a、b互为倒数,则ab=1 D.代数式是整式 |
答案
C |
据专家权威分析,试题“下列语句正确的是[]A.正数和负数统称有理数B.近似数0.010精确..”主要考查你对 正数与负数,倒数,近似数和有效数字,代数式的概念,整式的定义 等考点的理解。关于这些考点的“档案”如下:
正数与负数倒数近似数和有效数字代数式的概念整式的定义
考点名称:正数与负数
正数:
就是大于0的(实数)
负数:
就是小于0的(实数)
0既不是正数也不是负数。非负数:正数与零的统称。
非正数:负数与零的统称。正负数的认识:
1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?
答案是不一定,因为字母a可以表示任意的数。
若a表示正数时,-a是负数;
当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
当a表示负数时,-a就不是负数了,它是一个正数。2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3.数细分有五类:正整数、正分数、0、负整数、负分数;
但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
负整数和0统称为非正整数。
考点名称:倒数
- 倒数的定义:
如果两个数的乘积等于1,那么这两个数就叫做互为倒数。 - 倒数性质:
(1)若a、b互为倒数,则ab=1,或,反之也成立;
(2)0没有倒数;
(3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。
倒数的特点:
一个正实数(1除外)加上它的倒数 一定大于2。
理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
b/a+(a-b)/a
=b×b/a×b+(a÷b-b×b)/ab
=(a×a-b×b+b×b)/ab
=a×a/a×b,
又因为a>b,
所以a·a>a·b,
所以a·a/a·b>1,
所以1+(a-b)/b+a·a/a·b>2,
所以一个正实数加上它的倒数一定大于2。
当b>a时也一样。
同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。 - 倒数的求法:
1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
说明:倒数是本身的数是1和-1。(0没有倒数)
把0.25化成分数,即1/4
再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
再把4/1化成整数,即4
所以0.25是4的倒数。也可以说4是0.25的倒数
也可以用1去除以这个数,例如0.25
1/0.25等于4
所以0.25的倒数4.
因为乘积是1的两个数互为倒数。
分数、整数也都使不完整用这种规律。
考点名称:近似数和有效数字
- 近似数:
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
如:我国的人口无法计算准确数目,但是可以说出一个近似数。
比如说我国人口有13亿,13亿就是一个近似数。
有效数字:
是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。例如:
3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。
精确度:
近似数与准确数的接近程度,可以用精确度表示。
(1)一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;
(2)规定有效数字的个数,也是对近似数精确程度的一种要求。 - 有效数字注意:
①近似数的精确度有两种形式:精确到哪一位;保留几个有效数字;
②对于绝对值较大的数取近似值时,结果一般用科学计数法来表示,如:8 90 000(保留三个有效数字)的近似值,得8 903 000≈8.90×106。
③对带有计数单位的近似数,如2.3万,他有两个有效数字:2、3,而不是五个有效数字。 - 有效数字的舍入规则:
1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉。
2、当保留n位有效数字,若后面的数字大于第n位单位数字的0.5 ,则第位数字进1。
3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1。
如将下组数据保留三位
45.77=45.8 43.03=43.0
38.25=38.2 47.15=47.2
考点名称:代数式的概念
- 代数式:
由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
单独一个数和字母也是代数式。
例如:ax+2b,-2/3,b^2/26,√a+√2等。 代数式的性质:
(1)单独一个数或一个字母也是代数式,如-3,a.
(2)代数式中只能有运算符号,不应含有等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈,也就是说,等式或不等式不是代数式,但代数式中可以含有括号。 可以有绝对值。例如:|x|,|-2.25| 等。
(3)代数式中的字母表示的数必须使这个代数式有意义,即在实际问题中,字母表示的数要符合实际问题。
代数式的分类:
在实数范围内,代数式分为有理式和无理式。
一、有理式
有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。
这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算.
整式有包括单项式(数字或字母的乘积或单独的一个数字或字母)和多项式(若干个单项式的和).
1.单项式
没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数
2.多项式
个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
齐次多项式:各项次数相同的多项式叫做齐次多项式。
不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。
实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。
同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。
二、无理式
含有字母的根式或字母的非整数次乘方的代数式叫做无理式。- 代数式的书写:
(1)两字母相乘、数字与字母相乘、字母与括号相乘以及括号与括号相乘时,乘号都可以省略不写.如:“x与y的积”可以写成“xy”;“a与2的积”应写成“2a”,“m、n的和的2倍”应写成“2(m+n)”。
(2)字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面.例如“x×2”要写成”2x”,不能写成“x2”;“长、宽分别为a、b的长方形的周长”要写成“2(a+b)”,不能写成“(a+b)2”。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |