已知一个直角三角形的两边长分别为6、8,则下列选项中,可作为第三边长的是()A.28B.100C.27D.10-数学
=2.5
所以:5-2>0
即3->-2
五、作商法:
a>0,b>0,若>1,则a>b
例:比较与的大小
因为÷
=×
=<1
所以:<
六、找中间量法
要证明a>b,可找中间量c,转证a>c,c>b
例:比较与的大小
因为>1,1>
所以>
所以:5-2>0
即3->-2
五、作商法:
a>0,b>0,若>1,则a>b
例:比较与的大小
因为÷
=×
=<1
所以:<
六、找中间量法
要证明a>b,可找中间量c,转证a>c,c>b
例:比较与的大小
因为>1,1>
所以>
七、平方法:
a>0,b>0,若a2>b2,则a>b。
例:比较与的大小
()2=5+2+11=16+2
()2=6+2+10=16+2
所以:<
八、倒数法:
九、有理化法:
可分母有理化,也可分子有理化。
十、放缩法:
常用无理数口诀记忆:
√2≈1.41421:意思意思而已
√3≈1.7320:一起生鹅蛋
√5≈2.2360679:两鹅生六蛋(送)六妻舅
√7≈2.6457513:二妞是我,气我一生
√8=2√2≈2.82842啊,不啊不是啊
e≈2.718:粮店吃一把
π≈3.14159,26535,897,932,384,262:
山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔
考点名称:三角形的三边关系
三角形的三边关系:
在三角形中,任意两边和大于第三边,任意两边差小于第三边。
设三角形三边为a,b,c
则
a+b>c
a+c>b
b+c>a
a-b<c
a-c<b
b-c<a
在直角三角形中,设a、b为直角边,c为斜边。
则两直角边的平方和等于斜边平方。
在等边三角形中,a=b=c
在等腰三角形中, a,b为两腰,则a=b
在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc三角形的三边关系定理及推论:
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;
②当已知两边时,可确定第三边的范围;
③证明线段不等关系。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |