估算是现实生活中一种常用的解决问题的方法,比如在工厂工人师傅要做一个正方体,使它的体积为900立方米,现有边长为5米,8米,10米的三种正方形材料,问用哪一种材料作为正-数学
题文
估算是现实生活中一种常用的解决问题的方法,比如在工厂工人师傅要做一个正方体,使它的体积为900立方米,现有边长为5米,8米,10米的三种正方形材料,问用哪一种材料作为正方体的表面比较合适?这就要用到估算的方法,因此有必要进行这方面的训练:0.00048的算术平方根在( )
|
题文
估算是现实生活中一种常用的解决问题的方法,比如在工厂工人师傅要做一个正方体,使它的体积为900立方米,现有边长为5米,8米,10米的三种正方形材料,问用哪一种材料作为正方体的表面比较合适?这就要用到估算的方法,因此有必要进行这方面的训练:0.00048的算术平方根在( )
|
题型:单选题 难度:中档
答案
∵0.0004<0.00048<0.0009, ∴0.02<
故选B. |
据专家权威分析,试题“估算是现实生活中一种常用的解决问题的方法,比如在工厂工人师傅..”主要考查你对 估算无理数的大小,平方根 等考点的理解。关于这些考点的“档案”如下:
估算无理数的大小平方根
考点名称:估算无理数的大小
比较无理数大小的几种方法:
比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
一、直接法
直接利用数的大小来进行比较。
①、同是正数:
例:<?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" />
根据无理数和有理数的联系,被开数大的那个就大。
因为3=>,所以3>
②、 同是负数:
根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、 一正一负:
正数大于一切负数。
二、隐含条件法:
根据二次根式定义,挖掘隐含条件。
例:比较与的大小。
因为成立
所以a-2≧0即a≧2
所以1-a≦-1
所以≧0,≦-1
所以>
三、同次根式下比较被开方数法:
例:比较4与5大小
因为
四、作差法:
若a-b>0,则a>b
例:比较3-与-2的大小
因为3---2
=3--+2
=5-2
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |