下列说法错误的是()A.要使表达式x-1?x+1有意义,则x≥1B.满足不等式-5<x<5的整数x共有5个C.当1,x,3分别为某个三角形的三边长时,有x2-6x+9(x-2)2=x-3x-2成立D.若实数a,b满-数学

+2
=5-2
<=2.5
所以:5-2>0
即3->-2

五、作商法:
a>0,b>0,若>1,则a>b
例:比较的大小
因为÷
=×
=<1
所以:<

六、找中间量法
要证明a>b,可找中间量c,转证a>c,c>b
例:比较的大小
因为>1,1>
所以>

七、平方法:
a>0,b>0,若a2>b2,则a>b。
例:比较的大小
()2=5+2+11=16+2
()2=6+2+10=16+2
所以:<

八、倒数法:


九、有理化法:
可分母有理化,也可分子有理化。



十、放缩法:

  • 常用无理数口诀记忆:
    √2≈1.41421:意思意思而已
    √3≈1.7320:一起生鹅蛋
    √5≈2.2360679:两鹅生六蛋(送)六妻舅
    √7≈2.6457513:二妞是我,气我一生
    √8=2√2≈2.82842啊,不啊不是啊
    e≈2.718:粮店吃一把
    π≈3.14159,26535,897,932,384,262:
    山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔

  • 考点名称:二次根式的定义

    • 二次根式:
      我们把形如叫做二次根式。
      二次根式必须满足:
      含有二次根号“”;
      被开方数a必须是非负数。

      确定二次根式中被开方数的取值范围:
      要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

    • 二次根式性质:
      (1)a≥0 ; ≥0 (双重非负性 );

      (2)

      (3)
                                  0(a=0);

      (4)

      (5)

    • 二次根式判定:
      ①二次根式必须有二次根号,如等;
      ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
      ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
      ④二次根式是一个非负数;
      ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

      二次根式的应用:
      主要体现在两个方面:
      (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
      (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

    考点名称:算术平方根

    • 概念:
      若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
      规定:0的算术平方根是0。
      表示:a的算术平方根记为,读作“根号a”。
      注:只有非负数有算术平方根,而且只有一个算术平方根。

    • 平方根和算术平方根的区别与联系:
      区别:
      (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐