能与数轴上的点一一对应的是[]A.整数B.有理数C.无理数D.实数-八年级数学

首页 > 考试 > 数学 > 初中数学 > 实数的定义/2019-02-24 / 加入收藏 / 阅读 [打印]

题文

能与数轴上的点一一对应的是
A.整数
B.有理数
C.无理数
D.实数
题型:单选题  难度:偏易

答案

D

据专家权威分析,试题“能与数轴上的点一一对应的是[]A.整数B.有理数C.无理数D.实数-八年..”主要考查你对  实数的定义,数轴  等考点的理解。关于这些考点的“档案”如下:

实数的定义数轴

考点名称:实数的定义

  • 实数定义:
    实数由有理数和无理数组成,其中无理数就是无限不循环小数,有理数就包括整数和分数。
    数学上,实数直观地定义为和数轴上的点一一对应的数。
    本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

  • 实数的定义分析:
    1.实数可以分为有理数(如31、)和无理数(如π、)两类,或代数数和超越数两类,或正数,负数和零三类。
    2.实数集合通常用字母“R”表示。实数可以用来测量连续的量。
    3.理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
    在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。
    4.通常把正实数和零合称为分负数,把负实数和零合称为非正数。
    5.任何两个实数之间都有无数个有理数和无理数。

  • 实数的性质:
    1.基本运算:
    实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。
    实数加、减、乘、除(除数不为零)、平方后结果还是实数。
    任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
    有理数范围内的运算律、运算法则在实数范围内仍适用:
    交换律:a+b=b+a , ab=ba
    结合律:(a+b)+c=a+(b+c)
    分配律:a(b+c)=ab+ac

    2.实数的相反数:
    实数的相反数的意义和有理数的相反数的意义相同。
    实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。
    实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

    3.实数的绝对值:
    实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;
    一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a|
    ①a为正数时,|a|=a(不变)
    ②a为0时, |a|=0
    ③a为负数时,|a|= a(为a的相反数)
    (任何数的绝对值都大于或等于0,因为距离没有负的。)

    4实数的倒数:
    实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a (a≠0)

  • 实数的分类:
    (1)按定义分类:
                                                正整数
                                  整数 {    零
                                                 负整数

                 有理数{                                     }有限小数或无限循环小数
                                                 真分数
                                   分数{
    实数{                                 负分数

                                        正无理数
                      无理数{                      }无限不循环小数
                                        负无理数


    (2)按性质分类:
                                                         正整数
                                    正有理数{
                 正实数{                        正分数
                                    正无理数                          

    实数{   零                                 负整数
                                   负有理数{
                 负实数{                       负分数                 
                                   负无理数

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
    从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
    从原点向左,用类似的方法依次表示-1,-2,-3,…。

  • 数轴的应用范畴:
    符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)