下列命题中,正确命题的个数是()①垂直于弦的直径平分这条弦;②平行四边形对角互补;③有理数与数轴上的点是-一对应的;④相交两圆的公共弦垂直平分两圆的连心线.A.0个B.1个C.2-数学
题文
下列命题中,正确命题的个数是( ) ①垂直于弦的直径平分这条弦; ②平行四边形对角互补; ③有理数与数轴上的点是-一对应的; ④相交两圆的公共弦垂直平分两圆的连心线.
|
答案
B |
据专家权威分析,试题“下列命题中,正确命题的个数是()①垂直于弦的直径平分这条弦;②平..”主要考查你对 实数的定义,垂直于直径的弦,命题,定理 等考点的理解。关于这些考点的“档案”如下:
实数的定义垂直于直径的弦命题,定理
考点名称:实数的定义
- 实数定义:
实数由有理数和无理数组成,其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。 - 实数的定义分析:
1.实数可以分为有理数(如31、)和无理数(如π、)两类,或代数数和超越数两类,或正数,负数和零三类。
2.实数集合通常用字母“R”表示。实数可以用来测量连续的量。
3.理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。
4.通常把正实数和零合称为分负数,把负实数和零合称为非正数。
5.任何两个实数之间都有无数个有理数和无理数。 实数的性质:
1.基本运算:
实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
有理数范围内的运算律、运算法则在实数范围内仍适用:
交换律:a+b=b+a , ab=ba
结合律:(a+b)+c=a+(b+c)
分配律:a(b+c)=ab+ac
2.实数的相反数:
实数的相反数的意义和有理数的相反数的意义相同。
实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。
实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
3.实数的绝对值:
实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;
一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a|
①a为正数时,|a|=a(不变)
②a为0时, |a|=0
③a为负数时,|a|= a(为a的相反数)
(任何数的绝对值都大于或等于0,因为距离没有负的。)
4实数的倒数:
实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a (a≠0)实数的分类:
(1)按定义分类:
正整数
整数 { 零
负整数有理数{ }有限小数或无限循环小数
真分数
分数{
实数{ 负分数
正无理数
无理数{ }无限不循环小数
负无理数
(2)按性质分类:
正整数
正有理数{
正实数{ 正分数
正无理数
实数{ 零 负整数
负有理数{
负实数{ 负分数
负无理数
考点名称:垂直于直径的弦
垂径定理:
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
注:
(1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段;
(2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。
垂径定理的推论:
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等
(证明时的理论依据就是上面的五条定理)
但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |