如图,平面直角坐标系中,四边形OABC为矩形,点A.B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿B-九年级数学

首页 > 考试 > 数学 > 初中数学 > 写代数式/2019-02-24 / 加入收藏 / 阅读 [打印]

题文

如图,平面直角坐标系中,四边形OABC为矩形,点A.B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于P,连结MP。已知动点运动了x秒。
(1)P点的坐标为(____ ,_____ );(用含x的代数式表示)
(2)试求 MPA面积的最大值,并求此时x的值。
(3)请你探索:当x为何值时,MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。
题型:解答题  难度:偏难

答案

(1)(6-x , x );
(2)设MPA的面积为S,在MPA中,MA=6-x,MA边上的高为 x,
    其中,0≤x≤6
    ∴S=(6-x)×x= (-x2+6x) = -  (x-3)2+6 
    ∴S的最大值为6, 此时x =3;
(3)延长NP交x轴于Q,则有PQ⊥OA
  ①若MP=PA ∵PQ⊥MA ∴MQ=QA=x. ∴3x=6, ∴x=2;
  ②若MP=MA,则MQ=6-2x,PQ= x,PM=MA=6-x
   在RtPMQ中,∵PM2=MQ2+PQ2
   ∴(6-x) 2=(6-2x) 2+ (x) 2   ∴x=
  ③若PA=AM,∵PA=x,AM=6-x   ∴x=6-x   ∴x= 
  综上所述,x=2,或x=,或x=

据专家权威分析,试题“如图,平面直角坐标系中,四边形OABC为矩形,点A.B的坐标分别为..”主要考查你对  写代数式,求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

写代数式求二次函数的解析式及二次函数的应用

考点名称:写代数式

  • 代数式:
    由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
    数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。
    例如:ax+2b,-2/3,b^2/26,√a+√2等。
    带有“(≥)” “=”“≠”等符号的不是代数式
    注意:
    1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。
    2、可以有绝对值。例如:|x|,|-2.25| 等。

  • 代数式的书写要求:
    一、数字与数字相乘时,中间的乘号不能用“? ”代替,更不能省略不写。
    如:4乘5,写作4×5,不能写成4?5,更不能写成45
    二、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。
    如: a的5倍,写作:5a 不要写成a5。
    三、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性
    如: a乘b ,写成ab或ba 
    四、当字母和带分数相乘时,要把带分数化成假分数。
    如:3 1/2 乘a  写作:7/2 a    不要写成32/1a 
    五、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。
    如:5除以a  写作5/a    , 不要写成5÷a ; c除以 d写作 ,不要写成 c÷ d
    六、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。
    如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本。

  • 代数式的书写格式:
    (1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;
    (2)数字要写在前面;
    (3)带分数一定要写成假分数;
    (4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;
    (5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

  • 代数式:

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐