某食品零售店为面包厂代销一种面包,未售出的面包可退回厂家,统计销售情况时发现,当这种面包的单价定为7角时,每天可卖出160个,在此基础上,这种面包的单价每提高1角时,-九年级数学
题文
某食品零售店为面包厂代销一种面包,未售出的面包可退回厂家,统计销售情况时发现,当这种面包的单价定为7角时,每天可卖出160个,在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个,该零售店每个面包的成本是5角,设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角)。 (1)用含x 的代数式分别表示出每个面包的利润与卖出的面包个数; (2)求y与x之间的函数关系式; (3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少? |
答案
解:(1)(300-20x)(或[160-(x-7)×20]); (2)y=-20x2+400x-1500; (3)当每个面包单价定为10角时,该零售店每天获得的利润最大,最大利润为500角。 |
据专家权威分析,试题“某食品零售店为面包厂代销一种面包,未售出的面包可退回厂家,统..”主要考查你对 写代数式,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
写代数式二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:写代数式
- 代数式:
由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。
例如:ax+2b,-2/3,b^2/26,√a+√2等。
带有“(≥)” “=”“≠”等符号的不是代数式
注意:
1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。
2、可以有绝对值。例如:|x|,|-2.25| 等。 - 代数式的书写要求:
一、数字与数字相乘时,中间的乘号不能用“? ”代替,更不能省略不写。
如:4乘5,写作4×5,不能写成4?5,更不能写成45
二、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。
如: a的5倍,写作:5a 不要写成a5。
三、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性
如: a乘b ,写成ab或ba
四、当字母和带分数相乘时,要把带分数化成假分数。
如:3 1/2 乘a 写作:7/2 a 不要写成32/1a
五、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。
如:5除以a 写作5/a , 不要写成5÷a ; c除以 d写作 ,不要写成 c÷ d
六、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。
如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本。 代数式的书写格式:
(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;
(2)数字要写在前面;
(3)带分数一定要写成假分数;
(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;
(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。- 代数式:
考点名称:二次函数的最大值和最小值
- 二次函数的最值:
1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;
当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。
也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。
2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时 。
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |