一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元,设购进A型手机x部,B型手机y部,三款手机的进价和预售价如下-七年级数学

首页 > 考试 > 数学 > 初中数学 > 写代数式/2019-02-24 / 加入收藏 / 阅读 [打印]

题文

一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元,设购进A型手机x部,B型手机y部,三款手机的进价和预售价如下表:
(1)用含x,y的式子表示购进C型手机的部数;
(2)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元。
①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部。
题型:解答题  难度:中档

答案

解:(1)60-x-y;
(2)由题意,得 900x+1200y+1100(60-x-y)= 61000,整理得 y=2x-50;
(3)①由题意,得 P= 1200x+1600y+1300(60-x-y)- 61000-1500,整理得 P=500x+500,
②购进C型手机部数为:60-x-y =110-3x,
根据题意列不等式组,得
解得 29≤x≤34,
∴ x范围为29≤x≤34,且x为整数,
∵P是x的一次函数,k=500>0,
∴P随x的增大而增大,
∴当x取最大值34时,P有最大值,最大值为17500元,
此时购进A型手机34部,B型手机18部,C型手机8部。

据专家权威分析,试题“一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款..”主要考查你对  写代数式,一元一次不等式组的应用  等考点的理解。关于这些考点的“档案”如下:

写代数式一元一次不等式组的应用

考点名称:写代数式

  • 代数式:
    由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
    数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。
    例如:ax+2b,-2/3,b^2/26,√a+√2等。
    带有“(≥)” “=”“≠”等符号的不是代数式
    注意:
    1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。
    2、可以有绝对值。例如:|x|,|-2.25| 等。

  • 代数式的书写要求:
    一、数字与数字相乘时,中间的乘号不能用“? ”代替,更不能省略不写。
    如:4乘5,写作4×5,不能写成4?5,更不能写成45
    二、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。
    如: a的5倍,写作:5a 不要写成a5。
    三、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性
    如: a乘b ,写成ab或ba 
    四、当字母和带分数相乘时,要把带分数化成假分数。
    如:3 1/2 乘a  写作:7/2 a    不要写成32/1a 
    五、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。
    如:5除以a  写作5/a    , 不要写成5÷a ; c除以 d写作 ,不要写成 c÷ d
    六、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。
    如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本。

  • 代数式的书写格式:
    (1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;
    (2)数字要写在前面;
    (3)带分数一定要写成假分数;
    (4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;
    (5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

  • 代数式:

考点名称:一元一次不等式组的应用

  • 应用:列一元一次不等式组解决实际问题。

  • 一元一次不等式的应用主要涉及问题:
    1.分配问题:
    例:一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

    2.积分问题:
    例:某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格?

    3.比较问题:
    例:某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?

    4.行程问题:
    例:抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?

    5.车费问题:
    例:出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km?

    6.浓度问题:
    例:在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?

    7.增减问题:
    例:一根长20cm的弹簧,一端固定,另一端挂物体。在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.求弹簧所挂物体的最大质量是多少?

    8.销售问题:
    例:商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
    (1)试求该商品的进价和第一次的售价;
    (2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?

  • 一元一次不等式组解应用题的一般步骤为:
    列不等式组解决实际问题的步骤与列一元一次不等式解应用题的步骤相类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可。
    (1)审:认真审题,分清已知量、未知量及其关系,找出题中的不等关系,要抓住题中的关键词语,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;
    (2)设:设出适当的未知数;
    (3)列:根据题中的不等关系列出不等式组;
    (4)解:解出所列不等式组的解集;
    (5)答:写出答案,从不等式组的解集中找出符合题意的答案,并检验是否符合题意。