给出下列三个等式①(3a2-2a-1)2+(4a2+4a)2=(5a2+2a+1)2②m3-(n-m)3m3+n3=m-(n-m)m+n(其中m+n≠0)③x5+x4+1=(x3-x+1)(x2+x+1)其中正确命题的个数是()A.0B.1C.2D.3-数学
题文
给出下列三个等式 ①(3a2-2a-1)2+(4a2+4a)2=(5a2+2a+1)2 ②(其中m+n≠0) ③x5+x4+1=(x3-x+1)(x2+x+1) 其中正确命题的个数是( )
A.0 B.1 C.2 D.3
|
答案
B |
据专家权威分析,试题“给出下列三个等式①(3a2-2a-1)2+(4a2+4a)2=(5a2+2a+1)2②m3-(n-m)3..”主要考查你对 多项式 ,分式的基本性质 等考点的理解。关于这些考点的“档案”如下:
多项式 分式的基本性质
考点名称:多项式
- 多项式:
几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,这些单项式中的最高次数,就是这个多项式的次数。多项式和单项式统称为整式。 - 多项式性质:
1、多项式的次数:多项式中次数最高的项的次数;
2、多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来叫做把这个多项式按这个字母的降幂排列;
3、把一个多项式按某一个字母的指数从小到大的顺序排列起来叫做把这个多项式按这个字母的升幂排列。
4、多项式项数:若多项式以最少的单项式之和呈现,则每一个单项式都被称为此多项式的项,而项的数目称为项数。
例如:多项式 的项数是四,故称为四项式。当中的都是此多项式的项。
5、多项式的“元”:多项式中的变量种类称为元,各种变量以各字母表达(注:通常是x、y、z),一个多项式有n种变量就称为n元多项式。
例如:中有x、y二元,是二元多项式。因有四项,可称二元四项式。 多项式的运算:
1.加法与乘法:
多项式的加法:是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
例如:
也可以用矩阵乘法来进行:
2.多项式除法:
多项式的除法与整数的除法类似。
(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.
(2)用被除式的第一项去除除式的第一项,得商式的第一项.
(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.
(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.
被除式=除式×商式+余式
如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除
考点名称:分式的基本性质
- 分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
即,(C≠0),其中A、B、C均为整式。 - 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |