给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2-xy+y2,其中判断正确的是[]A.①②B.②③C.③④D.①④-七年级数学

首页 > 考试 > 数学 > 初中数学 > 数轴/2019-02-10 / 加入收藏 / 阅读 [打印]

题文

给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;  ②任何正数必定大于它的倒数;③5ab ,都是整式; ④x2-xy+y2,其中判断正确的是  
[     ]
A.①②    
B.②③      
C.③④      
D.①④
题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相..”主要考查你对  数轴,倒数,多项式 ,整式的定义  等考点的理解。关于这些考点的“档案”如下:

数轴倒数多项式 整式的定义

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
    从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
    从原点向左,用类似的方法依次表示-1,-2,-3,…。

  • 数轴的应用范畴:
    符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
    在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。

考点名称:倒数

  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。

  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。

考点名称:多项式

  • 多项式:
    几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,这些单项式中的最高次数,就是这个多项式的次数。多项式和单项式统称为整式。

  • 多项式性质:
    1、多项式的次数:多项式中次数最高的项的次数;
    2、多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来叫做把这个多项式按这个字母的降幂排列;
    3、把一个多项式按某一个字母的指数从小到大的顺序排列起来叫做把这个多项式按这个字母的升幂排列。
    4、多项式项数:若多项式以最少的单项式之和呈现,则每一个单项式都被称为此多项式的项,而项的数目称为项数。
    例如:多项式  的项数是四,故称为四项式。当中的都是此多项式的项。
    5、多项式的“元”:多项式中的变量种类称为元,各种变量以各字母表达(注:通常是x、y、z),一个多项式有n种变量就称为n元多项式。
    例如:中有x、y二元,是二元多项式。因有四项,可称二元四项式。

  • 多项式的运算:
    1.加法与乘法:
             多项式的加法:是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
    例如:
    也可以用矩阵乘法来进行:


    2.多项式除法:
    多项式的除法与整数的除法类似。
    (1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.
    (2)用被除式的第一项去除除式的第一项,得商式的第一项.
    (3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.
    (4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.
    被除式=除式×商式+余式
    如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除

考点名称:整式的定义

  • 整式:
    是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中被除数不能含有字母。单项式和多项式统称为整式。
    代数式中的一种有理式。不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。

  • 整式的组成性质:
    1.单项式
    (1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。
    注意:数与字母之间是乘积关系。
    (2)单项式的系数:单项式中的字母因数叫做单项式的系数。
    如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。
    (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

    2.多项式
    (1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。
    (2)单项式的次数:单项式中,次数最高的项的次数,就是这个多项式的次数。
    (3)多项式的排列:
    1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
    2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
    由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。

    为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。
    在做多项式的排列的题时注意:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐