如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:(1)将点B向右移动三个单位长度后到达点D,点D表示的数是_________;(2)移动点A到达点E,使B、C、E三点的其-七年级数学
题文
如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答: (1)将点B向右移动三个单位长度后到达点D,点D表示的数是 _________ ; (2)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请你直接写出所有点A移动的距离和方向; (3)若A、B、C三个点移动后得到三个互不相等的有理数,它们既可以表示为1,a,a+b的形式,又可以表示为0,b,的形式,试求a,b的值. |
答案
解:(1)1; (2)当点A向左移动时,则点B为线段AC的中点, ∵线段BC=3﹣(﹣2)=5, ∴点A距离点B有5个单位, ∴点A要向左移动3个单位长度; 当点A向右移动并且落在BC之间,则A点为BC的中点, ∴A点在B点右侧,距离B点2.5个单位, ∴点A要向右移动4.5 单位长度; 当点A向右移动并且在线段BC的延长线上,则C点为BA的中点, ∴点A要向右移动12个单位长度; (3)∵三个不相等的有理数可表示为1:a:a+b的形式,又可以表示为0,b,, ∴a≠0,a≠b,显然有b=1, ∴a+b=0,a=, ∴a=﹣1,b=1. |
据专家权威分析,试题“如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答..”主要考查你对 数轴,平移 等考点的理解。关于这些考点的“档案”如下:
数轴平移
考点名称:数轴
- 数轴定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。 - 用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。 - 数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
从原点向左,用类似的方法依次表示-1,-2,-3,…。 数轴的应用范畴:
符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。
考点名称:平移
- 定义:
将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等)平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。- 平移作图的步骤:
(1)找出能表示图形的关键点;
(2)确定平移的方向和距离;
(3)按平移的方向和距离确定关键点平移后的对应点;
(4)按原图的顺序,连结各对应点。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |