点A,B,C是数轴上的三个点,且BC=2AB.已知点A表示的数是-1,点B表示的数是3,点C表示的数是______.-数学
题文
点A,B,C是数轴上的三个点,且BC=2AB.已知点A表示的数是-1,点B表示的数是3,点C表示的数是______. |
答案
∵点A表示的数是-1,点B表示的数是3, ∴AB=|-1-3|=4; 又∵BC=2AB, ∴BC=2×4=8. ①若C在B的右边,其坐标应为3+8=11; ②若C在B的左边,其坐标应为3-8=-5; 故点C表示的数是11或-5. |
据专家权威分析,试题“点A,B,C是数轴上的三个点,且BC=2AB.已知点A表示的数是-1,点B..”主要考查你对 数轴,有理数减法 等考点的理解。关于这些考点的“档案”如下:
数轴有理数减法
考点名称:数轴
- 数轴定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。 - 用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。 - 数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
从原点向左,用类似的方法依次表示-1,-2,-3,…。 数轴的应用范畴:
符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。
考点名称:有理数减法
- 有理数的减法:
已知两个有理数加数的和与其中的一个加数,求另一个加数的运算,叫做有理数的减法,减法是加法的逆运算。 - 有理数的减法法则:
减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
两变:减法运算变加法运算,减数变成它的相反数。
一不变:被减数不变。可以表示成: a-b=a+(-b)。
计算步骤:
(1)把减法变为加法;
(2)按加法法则进行。 有理数减法点拨:
1.引进负数之后,对于任意两个有理数都可以求出其差,不存在“不够减”的问题,并有如下结论:
大数减小数,差为正数;
小数减大数,差为负数;
某数减去零,差为某数;
零减去某数,差为某数的相反数;
相等两数相减,差为零。
2.在减法转化为加法时,减数必须同时变成其相反数,即“同时改变两个符号”。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:定义D(a,b)=|a-b|表示数轴上a,b两数对应点间的距离.①分别求D(0,-3),D(-52,12)的值;②若D(1,x)=2,求x的值;③若数轴上不同的三点所表示的数m,n,z满足D(m,n)=D(m,z)-数学
下一篇:如果数轴上到一4的距离等于3的点,所表示的数是______.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |