已知3xnym+3与-4x2m-1yn+1是同类项,则m、n的值是()A.m=5n=3B.m=3n=5C.m=1n=2D.m=2n=4-数学
题文
已知3xnym+3与-4x2m-1yn+1是同类项,则m、n的值是( )
|
答案
依题意,得
将①代入②,可得 m+3=2m-1+1, 解得m=3, 把m=3代入①,得n=5. 故选B. |
据专家权威分析,试题“已知3xnym+3与-4x2m-1yn+1是同类项,则m、n的值是()A.m=5n=3B.m=..”主要考查你对 同类项,二元一次方程组的解法 等考点的理解。关于这些考点的“档案”如下:
同类项二元一次方程组的解法
考点名称:同类项
- 同类项:
所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
像4y与5y,100ab与14ab这样,所含字母相同,并且相同字母的次项的指数也相同的项叫做同类项,所有常数项都是同类项。(常数项也叫数字因数) 同类项性质:
(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;
(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;
(3)所有的常数项都是同类项。
例如:
1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项
-24ab与152ab是同类项 【同类项与字母前的系数大小无关】
2. -7和29也是同类项【所有常数项都是同类项。】
3. -a和a也是同类项【-a的系数是-1 a的系数是1 】
4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】
5.(3+k)与(3—k)是同类项。合并同类项:
多项式中的同类项可以合并,叫做合并同类项。
合并同类项步骤:
(1)准确的找出同类项。
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
(3)写出合并后的结果。
在掌握合并同类项时注意:
1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
2.不要漏掉不能合并的项。
3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
合并同类项的关键:正确判断同类项。
合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项的理论依据:
其实,合并同类项法则是有其理论依据的。它所依据的就是乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
例1.合并同类项
-8ab+6ab-3ab
分析:同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。
解答:原式=(-8+6-3)ab=-5 ab。
例2.合并同类项
-xy+3-2xy+5xy-4xy-7
分析:在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。
解答:原式=(-xy+5xy)+(-2xy-4xy)+(3-7)=-2xy-4
例3.合并同类项并解答:
2y-5y+y+4y-3y-2,其中y=1/2
=(2+1-3)y+(-5+4)y-2
=0+(-y)-2
当y=1/2时,原式=(-1/2)-2
=-5/2
在合并同类项时,要注意是常数项也是同类项。
考点名称:二元一次方程组的解法
- 二元一次方程组的解:
使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。 - 二元一次方程组解的情况:
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:
1、有一组解。如方程组:
x+y=5①
6x+13y=89②
x=-24/7
y=59/7 为方程组的解
2、有无数组解。如方程组:
x+y=6①
2x+2y=12②
因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3、无解。如方程组:
x+y=4①
2x+2y=10②,
因为方程②化简后为
x+y=5
这与方程①相矛盾,所以此类方程组无解。
可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:
ax+by=c
dx+ey=f
当a/d≠b/e 时,该方程组有一组解。
当a/d=b/e=c/f 时,该方程组有无数组解。
当a/d=b/e≠c/f 时,该方程组无解。 - 二元一次方程组的解法:
解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c>0)
一、消元法
1)代入消元法
用代入消元法的一般步骤是:
①选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
③解这个一元一次方程,求出 x 或 y 值;
④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组 :
x+y=5①
{
6x+13y=89②
解:由①得
x=5-y③
把③代入②,得
6(5-y)+13y=89
即 y=59/7
把y=59/7代入③,得
x=5-59/7
即 x=-24/7
∴ x=-24/7
y=59/7 为方程组的解
我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。
2)加减消元法
用加减法消元的一般步骤为:
①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),
再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
③解这个一元一次方程;
④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
例:解方程组:
x+y=9①
{
x-y=5②
解:①+②
2x=14
即 x=7
把x=7代入①,得
7+y=9
解,得:y=2
∴ x=7
y=2 为方程组的解
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。像这种解二元一次方程组的方法叫做加减消元法,简称加减法。
3)加减-代入混合使用的方法
例:解方程组:
13x+14y=41①
{
14x+13y=40 ②
解:②-①得
x-y=-1
x=y-1 ③
把③ 代入①得
13(y-1)+14y=41
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |