解决下列问题:①用一根长80厘米的绳子围成一个长方形,且这个长方形的长比宽多10厘米,则这个长方形的长和宽各是多少?这个长方形的面积是多少?②用这根绳于围成一个正方形,则-七年级数学

首页 > 考试 > 数学 > 初中数学 > 探索规律/2019-03-01 / 加入收藏 / 阅读 [打印]

题文

解决下列问题:
①用一根长80厘米的绳子围成一个长方形,且这个长方形的长比宽多10厘米,则这个长方形的长和宽各是多少?这个长方形的面积是多少?
②用这根绳于围成一个正方形,则这个正方形的边长是多少?面积是多少?
③如果用这根绳于围成一个圆,则这个圆的半径是多少,面积是多少?(可取3.14)
④再分别取长度100厘米,120厘米的绳子重复上面的①②③运算比较得出的结果.你能获得什么猜想?
题型:解答题  难度:中档

答案

解:
(1)设长方形的宽为x厘米,则长方形的长为(x+10)厘米,
根据题意可知:x+(x+10)=40,
所以x=15厘米,
长方形长为25厘米,宽为15厘米,面积为25×15=375(平方厘米);
(2)根据(1)解题方法,且正方形的边长相等,
所以可以算出正方形的边长为20厘米,
所以正方形的面积为20×20=400(平方厘米);
(3)设圆的半径为x厘米,
圆的周长为:2×x×π=80,
而圆的面积为S=π×x×x≈509.6(平方厘米);
(4)100厘米时,长方形面积为600平方厘米,正方形面积为625平方厘米,圆面积≈796平方厘米
120厘米时,长方形面积为875平方厘米,正方形面积为900平方厘米,圆面积≈1146平方厘米猜想,相同周长情况下,圆的面积>正方形的面积>长方形的面积.

据专家权威分析,试题“解决下列问题:①用一根长80厘米的绳子围成一个长方形,且这个长方..”主要考查你对  探索规律,一元一次方程的应用,认识平面图形,圆的认识  等考点的理解。关于这些考点的“档案”如下:

探索规律一元一次方程的应用认识平面图形圆的认识

考点名称:探索规律

  • 探索规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
    掌握探究的一般方法是解决此类问题的关键。
    (1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律;
    (2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。

  • 探索规律题题型和解题思路:
    1.探索条件型:结论明确,需要探索发现使结论成立的条件的题目;
    探索条件型往往是针对条件不充分、有变化或条件的发散性等情况,解答时要注意全面性,类似于讨论;解题应从结论着手,逆推其条件,或从反面论证,解题过程类似于分析法。

    2.探索结论型:给定条件,但无明确的结论或结论不唯一,而要探索发现与之相应的结论的题目;
    探索结论型题的特点是结论有多种可能,即它的结论是发散的、稳定的、隐蔽的和存在的;
    探索结论型题的一般解题思路是:
    (1)从特殊情形入手,发现一般性的结论;
    (2)在一般的情况下,证明猜想的正确性;
    (3)也可以通过图形操作验证结论的正确性或转化为几个熟悉的容易解决的问题逐个解决。
    3.探索规律型:在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;
    图形运动题的关键是抓住图形的本质特征,并仿照原题进行证明。在探索递推时,往往从少到多,从简单到复杂,要通过比较和分析,找出每次变化过程中都具有规律性的东西和不易看清的图形变化部分。

    4.探索存在型:在一定的条件下,需探索发现某种数学关系是否存在的题目.而且探索题往往也是分类讨论型的习题,无论从解题的思路还是书写的格式都应该让学生明了基本的规范,这也是数学学习能力要求。
    探索存在型题的结论只有两种可能:存在或不存在;
    存在型问题的解题步骤是:
    ①假设存在;
    ②推理得出结论(若得出矛盾,则结论不存在;若不得出矛盾,则结论存在)。
     解答探索题型,必须在缜密审题的基础上,利用学具,按照要求在动态的过程中,通过归纳、想象、猜想,进行规律的探索,提出观点与看法,利用旧知识的迁移类比发现接替方法,或从特殊、简单的情况入手,寻找规律,找到接替方法;解答时要注意方程思想、函数思想、转化思想、分类讨论思想、数形结合思想在解题中的应用;因此其成果具有独创性、新颖性,其思维必须严格结合给定条件结论,培养了学生的发散思维,这也是数学综合应用的能力要求。

考点名称:一元一次方程的应用

  • 许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;
    同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

  • 列一元一次方程解应用题的一般步骤:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: 
    ⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。  
    ⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;
    ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;
    ②间接未知数(往往二者兼用)。
    一般来说,未知数越多,方程越易列,但越难解。  
    ⑶用含未知数的代数式表示相关的量。  
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。  
    ⑸解方程及检验。  
    ⑹答题。  
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 一元一次方程应用题型及技巧:
    列方程解应用题的几种常见类型及解题技巧:
    (1)和差倍分问题:
    ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
    ②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
    ③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

    (2)行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:
    顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度
    例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
    慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
    两车同时开出,相背而行多少小时后两车相距600公里?
    两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
    两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
    慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)
    例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

    (3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。
    例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

    (4)工程问题:
    三个基本量:工作量、工作时间、工作效率;
    其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。
    例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

    (5)利润问题:
    基本关系:
    ①商品利润=商品售价-商品进价;
    ②商品利润率=商品利润/商品进价×100%;
    ③商品销售额=商品销售价×商品销售量;
    ④商品的销售利润=(销售价-成本价)×销售量。
    ⑤商品售价=商品标价×折扣率例.
    例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

    (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。
    数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;
    偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
    例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

    (7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。

    (8)储蓄问题:
    其数量关系是:
    利息=本金×利率×存期;:(注意:利息税)。
    本息=本金+利息,利息税=利息×利息税率。
    注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。 

    (9)溶液配制问题:
    其基本数量关系是:溶液质量=溶质质量+溶剂质量;
    溶质质量=溶液中所含溶质的质量分数。
    这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。 

    (10)比例分配问题: 
    这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
    常用等量关系:各部分之和=总量。 
    还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐