①当m取何值时,关于x的方程:3x﹣2=4与5x﹣1=﹣m的解相等?②一堆小麦用8个编织袋来装,以每袋55千克为标准,超过的记作为正数,不足的记作为负数,现记录如下:(单位:千克)+2,﹣3,-七年级数学
题文
①当m取何值时,关于x的方程:3x﹣2=4与5x﹣1=﹣m的解相等? ②一堆小麦用8个编织袋来装,以每袋55千克为标准,超过的记作为正数,不足的记作为负数,现记录如下:(单位:千克)+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2 (1)这堆小麦共重多少千克? (2)若每千克小麦的售价为1.2元,则这堆小麦可卖多少钱? ③探索规律:观察下面由组成的图案和算式,解答问题: |
(1)请猜想1+3+5+7+9+…+19= ; (2)请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)= ; (3)请用上述规律计算:103+105+107+…+2003+2005. ④在左边的日历中,用一个正方形任意圈出二行二列四个数, 如 |
若在第二行第二列的那个数表示为a,其余各数分别为b,c,d. |
如 |
(1)分别用含a的代数式表示b,c,d这三个数. (2)求这四个数的和(用含a的代数式表示,要求合并同类项化简) (3)这四个数的和会等于51吗?如果会,请算出此时a的值,如果不会,说明理由.(要求列方程解答) |
答案
解:①解方程3x﹣2=4,得x=2, 把x=2代入5x﹣1=﹣m,得m=﹣9. 故当m=﹣9时,关于x的方程:3x﹣2=4与5x﹣1=﹣m的解相等; ②(1)+2﹣3+2+1﹣2﹣1+0﹣2=﹣3,﹣3+55×8=437. 故这堆小麦共重437千克; (2)1.2×437=524.4. 故若每千克小麦的售价为1.2元,则这堆小麦可卖524.4元; ③(1)102, (2)(n+1)2, (3)103+105+107+…+2005=(1+3+…+2005)﹣(1+3++99+101)=10032﹣512=1003408; ④(1)在第二行第二列的数为a,则其余3个数分别是b=a﹣7,c=a﹣8,d=a﹣1; (2)a+b+c+d=a+a﹣7+a﹣8+a﹣1=4a﹣16; (3)假设这四个数的和等于51,由(2)知4a﹣16=51,解得a=16. ∵16不是正整数,不合题意. 故这四个数的和不会等于51. |
据专家权威分析,试题“①当m取何值时,关于x的方程:3x﹣2=4与5x﹣1=﹣m的解相等?②一堆小麦用..”主要考查你对 一元一次方程的解法,有理数加法,有理数乘法,看图形找规律 等考点的理解。关于这些考点的“档案”如下:
一元一次方程的解法有理数加法有理数乘法看图形找规律
考点名称:一元一次方程的解法
- 使方程左右两边相等的未知数的值叫做方程的解。
- 解一元一次方程的注意事项:
1、分母是小数时,根据分数的基本性质,把分母转化为整数;
2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
3、去括号时,不要漏乘括号内的项,不要弄错符号;
4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
7、分、小数运算时不能嫌麻烦;
8、不要跳步,一步步仔细算 。 解一元一次方程的步骤:
一般解法:
⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
依据:等式的性质2
⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律
⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质1
⒋ 合并同类项:把方程化成ax=b(a≠0)的形式;
依据:乘法分配律(逆用乘法分配律)
⒌ 系数化为1:在方程两边都除以未知数的系数a,得到方程的解
依据:等式的性质2方程的同解原理 :
如果两个方程的解相同,那么这两个方程叫做同解方程。
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程应用题的重要方法:
⒈认真 审题(审题)
⒉分析已知和未知量
⒊找一个合适的 等量关系
⒋设一个恰当的未知数
⒌列出合理的方程 (列式)
⒍解出方程(解题)
⒎ 检验
⒏写出答案(作答)例:ax=b(a、b为常数)?
解:当a≠0,b=0时,
ax=0
x=0(此种情况与下一种一样)
当a≠0时,x=b/a。
当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)
当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)
例:
(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小 公倍数)得:
5(3x+1)-10×2=(3x-2)-2(2x+3)
去括号得:
15x+5-20=3x-2-4x-6
移项得:
15x-3x+4x=-2-6-5+20
合并同类项得:
16x=7
系数化为1得:
x=7/16。注:字母公式(等式的性质)
a=b a+c=b+c a-c=b-c (等式的性质1)
a=b ac=bc
a=bc(c≠0)= a÷c=b÷c(等式的性质2)
检验 算出后需检验的。
求根公式
由于一元一次方程是 基本方程,教科书上的解法只有上述的方法。
但对于标准形式下的一元一次方程 ax+b=0
可得出求根公式x=-(b/a)
考点名称:有理数加法
- 有理数的加法:
把两个有理数合成一个有理数的运算叫做有理数的加法。 有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;
(3)互为相反的两个数相加得0;
(4)一个数同0相加,仍得这个数。
有理数加法的运算律:
(1)加法的交换律 :a+b=b+a;
(2)加法的结合律:( a+b ) +c = a + (b +c)。几个有理数相加常用方法:
①.运用加法运算律把同号的加数相加,再把异号的加数相加;
②.应用运算律把可以凑整的加数相加;
③.运用运算律把互为相反数的加数相加。
用加法的运算律进行简便运算的基本思路:
①先把互为相反数的数相加;
②把同分母的分数先相加;
③把符号相同的数先相加;
④把相加得整数的数先相加。
注意事项:
有理数的加法与小学的加法有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:
一是确定结果的符号;二是求结果的绝对值。
在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则。
在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。
多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。
记忆要点:
同号相加不变,异号相加变减。欲问符号怎么定,绝对值大号选。
考点名称:有理数乘法
- 有理数乘法定义:
求两个有理数因数的积的运算叫做有理数的乘法。 - 有理数乘法的法则:
(1)同号两数相乘,取正号,并把绝对值相乘;
(2)异号两数相乘,取负号,并把绝对值相乘;
(3)任何数与0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有理数乘法的运算律:
(1)交换律:ab=ba;
(2)结合律:(ab)c=a(bc);
(3)分配律:a(b+c)=ab+ac。 - 记住乘法符号法则:
1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
2.几个数相乘,只要有一个数为0,积就是0。
乘法法则的推广:
1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
2.几个数相乘,有一个因数为零,积就为零;
3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |