若方程5x-3m4=m2-154的解是非正数,则m的取值范围是()A.m≤3B.m≤2C.m≥3D.m≥2-数学

题文

若方程
5x-3m
4
=
m
2
-
15
4
的解是非正数,则m的取值范围是(  )
A.m≤3B.m≤2C.m≥3D.m≥2
题型:单选题  难度:偏易

答案

解方程
5x-3m
4
=
m
2
-
15
4

得x=m-3,
∵方程的解是非正数,
∴x≤0,
即m-3≤0,
∴m≤3.
故选A.

据专家权威分析,试题“若方程5x-3m4=m2-154的解是非正数,则m的取值范围是()A.m≤3B.m≤2..”主要考查你对  一元一次方程的解法,不等式待定系数的取值范围  等考点的理解。关于这些考点的“档案”如下:

一元一次方程的解法不等式待定系数的取值范围

考点名称:一元一次方程的解法

  • 使方程左右两边相等的未知数的值叫做方程的解。

  • 解一元一次方程的注意事项:
    1、分母是小数时,根据分数的基本性质,把分母转化为整数;
    2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
    3、去括号时,不要漏乘括号内的项,不要弄错符号;
    4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
    5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
    6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
    7、分、小数运算时不能嫌麻烦;
    8、不要跳步,一步步仔细算 。

  • 解一元一次方程的步骤:
    一般解法:
    ⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
    依据:等式的性质2
    ⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号)
    依据:乘法分配律
    ⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
    依据:等式的性质1
    ⒋ 合并同类项:把方程化成ax=b(a≠0)的形式;
    依据:乘法分配律(逆用乘法分配律)
    ⒌ 系数化为1:在方程两边都除以未知数的系数a,得到方程的解
    依据:等式的性质2

    方程的同解原理
    如果两个方程的解相同,那么这两个方程叫做同解方程。
    ⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
    ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 

    做一元一次方程应用题的重要方法:
    ⒈认真 审题(审题) 
    ⒉分析已知和未知量 
    ⒊找一个合适的 等量关系 
    ⒋设一个恰当的未知数  
    ⒌列出合理的方程 (列式) 
    ⒍解出方程(解题)  
    ⒎ 检验 
    ⒏写出答案(作答)

    例:ax=b(a、b为常数)?
    解:当a≠0,b=0时,
    ax=0
    x=0(此种情况与下一种一样)
    当a≠0时,x=b/a。
    当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)
    当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)
    例:
    (3x+1)/2-2=(3x-2)/10-(2x+3)/5

    去分母(方程两边同乘各分母的最小 公倍数)得:
    5(3x+1)-10×2=(3x-2)-2(2x+3)
    去括号得:
    15x+5-20=3x-2-4x-6
    移项得:
    15x-3x+4x=-2-6-5+20
    合并同类项得:
    16x=7
    系数化为1得:
    x=7/16。

    注:字母公式(等式的性质)
    a=b a+c=b+c a-c=b-c (等式的性质1)
    a=b ac=bc
    a=bc(c≠0)= a÷c=b÷c(等式的性质2)
    检验 算出后需检验的。
    求根公式
    由于一元一次方程是 基本方程,教科书上的解法只有上述的方法。
    但对于标准形式下的一元一次方程 ax+b=0
    可得出求根公式x=-(b/a)

考点名称:不等式待定系数的取值范围

  • 不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围。

  • 不等式待定系数的取值范围求法:
    一、根据不等式(组)的解集确定字母取值范围  
    例:
    如果关于x的不等式(a+1)x>2a+2.的解集为x<2,则a的取值范围是    (    )
        A.a<0  B.a<一l   C.a>l  D.a>一l
    解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B.

    二、根据不等式组的整数解情况确定字母的取值范围
    例:
    已知不等式组的整数解只有5、6。求a和b的范围.
    解:解不等式组得,借助于数轴,如图:

    知: 2+a只能在4与5之间。只能在6与7之间.
    ∴4≤2+a<5,6<≤7
    ∴2≤a<3,13<b≤15


    三、根据含未知数的代数式的符号确定字母的取值范围
    例:
    已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.
    解:由2a-3x+1=0,可得a= ;由3b-2x-16=0,可得b= .
    又a≤4<b,
    所以,  ≤4<
    解得:-2<x≤3.

    四、逆用不等式组解集求解
    例: