如果15x-3是一个正整数,则x的最大的整数值为()A.8B.13C.16D.18-数学

题文

如果
15
x-3
是一个正整数,则x的最大的整数值为(  )
A.8B.13C.16D.18
题型:单选题  难度:偏易

答案

15
x-3
是一个正整数,x为整数,
又∵15=1×15=3×5=-1×(-15)=-3×(-5),
∴x-3=1或x-3=15或x-3=3或x-3=5或x-3=-1或x-3=-15或x-3=-3或x-3=-5,
解得:x的值是4或18或6或8或2或-12或0或-2,
∴x的最大的整数值是18,
故选D.

据专家权威分析,试题“如果15x-3是一个正整数,则x的最大的整数值为()A.8B.13C.16D.18-..”主要考查你对  一元一次方程的解法,分式的定义   等考点的理解。关于这些考点的“档案”如下:

一元一次方程的解法分式的定义

考点名称:一元一次方程的解法

  • 使方程左右两边相等的未知数的值叫做方程的解。

  • 解一元一次方程的注意事项:
    1、分母是小数时,根据分数的基本性质,把分母转化为整数;
    2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
    3、去括号时,不要漏乘括号内的项,不要弄错符号;
    4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
    5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
    6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
    7、分、小数运算时不能嫌麻烦;
    8、不要跳步,一步步仔细算 。

  • 解一元一次方程的步骤:
    一般解法:
    ⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
    依据:等式的性质2
    ⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号)
    依据:乘法分配律
    ⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
    依据:等式的性质1
    ⒋ 合并同类项:把方程化成ax=b(a≠0)的形式;
    依据:乘法分配律(逆用乘法分配律)
    ⒌ 系数化为1:在方程两边都除以未知数的系数a,得到方程的解
    依据:等式的性质2

    方程的同解原理
    如果两个方程的解相同,那么这两个方程叫做同解方程。
    ⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
    ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 

    做一元一次方程应用题的重要方法:
    ⒈认真 审题(审题) 
    ⒉分析已知和未知量 
    ⒊找一个合适的 等量关系 
    ⒋设一个恰当的未知数  
    ⒌列出合理的方程 (列式) 
    ⒍解出方程(解题)  
    ⒎ 检验 
    ⒏写出答案(作答)

    例:ax=b(a、b为常数)?
    解:当a≠0,b=0时,
    ax=0
    x=0(此种情况与下一种一样)
    当a≠0时,x=b/a。
    当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)
    当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)
    例:
    (3x+1)/2-2=(3x-2)/10-(2x+3)/5

    去分母(方程两边同乘各分母的最小 公倍数)得:
    5(3x+1)-10×2=(3x-2)-2(2x+3)
    去括号得:
    15x+5-20=3x-2-4x-6
    移项得:
    15x-3x+4x=-2-6-5+20
    合并同类项得:
    16x=7
    系数化为1得:
    x=7/16。

    注:字母公式(等式的性质)
    a=b a+c=b+c a-c=b-c (等式的性质1)
    a=b ac=bc
    a=bc(c≠0)= a÷c=b÷c(等式的性质2)
    检验 算出后需检验的。
    求根公式
    由于一元一次方程是 基本方程,教科书上的解法只有上述的方法。
    但对于标准形式下的一元一次方程 ax+b=0
    可得出求根公式x=-(b/a)

考点名称:分式的定义

  • 分式的定义:
    一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。
    其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。
    注:
    (1)分式的分母中必须含有字母;
    (2)分母的值不能为零,如果分母的值为零,那么分式无意义。

  • 分式的概念包括3个方面:
    ①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
    ②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
    ③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

    分式有意义的条件:
    (1)分式有意义条件:分母不为0;
    (2)分式无意义条件:分母为0;
    (3)分式值为0条件:分子为0且分母不为0;
    (4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负 。

  • 分式的区别概念:
    分式与分数的区别与联系:
    a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;
    b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。

    整式和分式统称为有理式。
    带有根号且根号下含有字母的式子叫做无理式。
    无限不循环小数也是无理式
    无理式和有理式统称代数式