创业的故事:(1)小王自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装.为了缓解资金的压力,小王决定打折销售.若每件服装按标价的5折出售将亏20-七年级数学

题文

创业的故事:
(1)小王自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装.为了缓解资金的压力,小王决定打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.①请你算一算每件服装标价多少元,每件服装成本是多少元?②为了尽快减少库存,又保证不亏本,请你告诉小王最多能打几折.
(2)小王认真总结了前一次的教训,经详细的市场调查发现,有一种彩色芳香方形蜡烛很受人们喜爱,于是决定在卖服装的同时代销这种蜡烛.(形状及相关尺寸如图所示,单位:厘米)①如图是为这种蜡烛设计的包装盒,请画出沿长为3厘米的棱剪开的包装盒的平面展开图,并标出相应的尺寸;(接头处忽略不计)②计算此包装盒的表面积.
(3)由于市场定位准确,彩色芳香蜡烛的销售非常火爆,于是小王将服装店改为蜡烛专卖店,并且聘用了专门的销售员.生意做大了,小王觉得应该有一个代表专卖店形象的店标.请你选用右边四种图形中的任意三种为小王设计一个店标图案(相同图形可重复使用,其大小不限),并用一句话概括你所设计的图案的含义(10个字左右).
                        
题型:解答题  难度:偏难

答案

解:(1)①设每件衣服的标价为x元,
依题意得:50%x+20=80%x﹣40,
解得:x=200,
则每件衣服的成本是:0.5×200+20=120(元).
答:每件服装标价200元,每件服装成本是120元;
,即小张最多可打6折;
(2)①包装盒的平面展开图为:
②表面积是2(2×1+2×3+1×3)=2(2+6+3)=22cm2
(3)设计的图案可以是左图或右图:
设计的图案的含义:蜡烛—友谊的桥或烛光温暖世界、小小烛光点亮世界等等.
(答案不唯一)

据专家权威分析,试题“创业的故事:(1)小王自主创业开了一家服装店,因为进货时没有进行..”主要考查你对  一元一次方程的应用,认识平面图形,几何体的展开图,几何体的表面积,体积  等考点的理解。关于这些考点的“档案”如下:

一元一次方程的应用认识平面图形几何体的展开图几何体的表面积,体积

考点名称:一元一次方程的应用

  • 许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;
    同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

  • 列一元一次方程解应用题的一般步骤:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: 
    ⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。  
    ⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;
    ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;
    ②间接未知数(往往二者兼用)。
    一般来说,未知数越多,方程越易列,但越难解。  
    ⑶用含未知数的代数式表示相关的量。  
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。  
    ⑸解方程及检验。  
    ⑹答题。  
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 一元一次方程应用题型及技巧:
    列方程解应用题的几种常见类型及解题技巧:
    (1)和差倍分问题:
    ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
    ②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
    ③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

    (2)行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:
    顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度
    例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
    慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
    两车同时开出,相背而行多少小时后两车相距600公里?
    两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
    两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
    慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)
    例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

    (3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。
    例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

    (4)工程问题:
    三个基本量:工作量、工作时间、工作效率;
    其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。
    例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

    (5)利润问题:
    基本关系:
    ①商品利润=商品售价-商品进价;
    ②商品利润率=商品利润/商品进价×100%;
    ③商品销售额=商品销售价×商品销售量;
    ④商品的销售利润=(销售价-成本价)×销售量。
    ⑤商品售价=商品标价×折扣率例.
    例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

    (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。
    数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;
    偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
    例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

    (7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。

    (8)储蓄问题:
    其数量关系是:
    利息=本金×利率×存期;:(注意:利息税)。
    本息=本金+利息,利息税=利息×利息税率。
    注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。 

    (9)溶液配制问题:
    其基本数量关系是:溶液质量=溶质质量+溶剂质量;
    溶质质量=溶液中所含溶质的质量分数。
    这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。 

    (10)比例分配问题: 
    这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
    常用等量关系:各部分之和=总量。 
    还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。

考点名称:认识平面图形

  • 平面图形:
    有些几何图形(如线段、角、三角形、长方形、圆等)的各个部分都在同一平面内,它们是平面图形。
    如直线、射线、角、三角形、平行四边形、长方形(正方形)、梯形和圆都是几何图形,这些图形所表示的各个部分都在同一平面内,称为平面图形。
    例如:有一组对边平行的四边形一定是平面图形。(两条平行线确定一个平面)
    平面图形的大小,叫做它们的面积
    点的形成是线,线的形成是面,面的形成是体。

  • 平面图形分类:

  • 常见的平面图形图示: