若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装-数学

题文

若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的
1
4

问:
(1)按改变后的装卸方式,自始至终需要多长时间?
(2)参加装卸的有多少名工人?
题型:解答题  难度:中档

答案

(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了
x
4
小时,两人共干活(x+
x
4
)小时,平均每人干活
1
2
(x+
x
4
)小时,
由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是
1
2
(x+
x
4
)小时.
根据题得
1
2
(x+
x
4
)=10,
解得x=16(小时);

(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y-1)t小时,按题意,得16-(y-1)t=16×
1
4
,即(y-1)t=12.
解此不定方程得

y=2
t=12

y=3
t=6

y=4
t=4

y=5
t=3

y=13
t=1

即参加的人数y=2或3或4或5或7或13.

据专家权威分析,试题“若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同..”主要考查你对  一元一次方程的应用,一元二次方程的解法  等考点的理解。关于这些考点的“档案”如下:

一元一次方程的应用一元二次方程的解法

考点名称:一元一次方程的应用

  • 许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;
    同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

  • 列一元一次方程解应用题的一般步骤:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: 
    ⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。  
    ⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;
    ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;
    ②间接未知数(往往二者兼用)。
    一般来说,未知数越多,方程越易列,但越难解。  
    ⑶用含未知数的代数式表示相关的量。  
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。  
    ⑸解方程及检验。  
    ⑹答题。  
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 一元一次方程应用题型及技巧:
    列方程解应用题的几种常见类型及解题技巧:
    (1)和差倍分问题:
    ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
    ②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
    ③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

    (2)行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:
    顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度
    例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。