已知:在直角坐标系中,A、B两点是抛物线y=x2-(m-3)x-m与x轴的交点(A在B的右侧),x1、x2分别是A、B两点的横坐标,且|x1-x2|=3.(1)当m>0时,求抛物线的解析式.(2)如果(1)中所求-数学

题文

已知:在直角坐标系中,A、B两点是抛物线y=x2-(m-3)x-m与x轴的交点(A在B的右侧),x1、x2分别是A、B两点的横坐标,且|x1-x2|=3.
(1)当m>0时,求抛物线的解析式.
(2)如果(1)中所求的抛物线与y轴交于点C,问y轴上是否存在点D(不含与C重合的点),使得以D、O、A为顶点的三角形与△AOC相似?若存在,请求出D点的坐标;若不存在,请说明理由.
(3)一次函数y=kx+b的图象经过抛物线的顶点,且当k>0时,图象与两坐标轴所围成的面积是
1
5
,求一次函数的解析式.
题型:解答题  难度:中档

答案

(1)x2-(m-3)x-m=0,
x1+x2=m-3,x1?x2=-m,
∵|x1-x2|=3,
∴(x1+x22-4x1?x2=9,
∴(m-3)2+4m=9,
∵m>0,
∴m=2,
∴y=x2+x-2=0.
答:当m>0时,抛物线的解析式是y=x2+x-2.

(2)x2+x-2=0,
x1=-2,x2=1,
∴A(1,0),
即OA=1,
把x=0代入得:y=-2,
∴OC=2,
∵以D、O、A为顶点的三角形与△AOC相似,
∠AOC=∠AOD,
OA
OA
=
OD
OC
AO
OC
=
OD
OA

代入求出OD=OC=2,或OD=
1
2

∴D的坐标是(0,2)或(0,
1
2
).
答:存在点D(不含与C重合的点),使得以D、O、A为顶点的三角形与△AOC相似,D点的坐标是(0,2)或(0,
1
2
).

(3)当x=0时,y=b,
当y=0时,x=-
b
k

∴|
1
2
b?(-
b
k
)|=
1
5
,①
y=x2+x-2=(x+
1
2
)2-
9
4

∴顶点坐标是(-
1
2
,-
9
4
),
代入y=kx+b得:-
9
4
=-
1
2
k+b ②,
由①②组成方程组,解方程组得:

k=7.9
b=3.7

k=2.7
b=1.1

∴y=7.9x+3.7,y=2.7x+1.1.
答:一次函数的解析式是y=7.9x+3.7或y=2.7x+1.1.

据专家权威分析,试题“已知:在直角坐标系中,A、B两点是抛物线y=x2-(m-3)x-m与x轴的交点..”主要考查你对  一元一次方程的应用,二元一次方程组的解法,求一次函数的解析式及一次函数的应用,一元二次方程根与系数的关系,二次函数的图像  等考点的理解。关于这些考点的“档案”如下:

一元一次方程的应用二元一次方程组的解法求一次函数的解析式及一次函数的应用一元二次方程根与系数的关系二次函数的图像