某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)商品价格AB进价(元/件)12001000售价(元/件)13501200(1)该商-数学


③水中航行
顺水行程=(船速+水速)×顺水时间  
逆水行程=(船速-水速)×逆水时间  
顺水速度=船速+水速  
逆水速度=船速-水速  
静水速度=(顺水速度+逆水速度)÷2  
水速:(顺水速度-逆水速度)÷2

2.配料问题:溶质=溶液×浓度
溶液=溶质+溶剂

3.增长率问题

4.工程问题
基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

5.几何问题
①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
②注意语言与解析式的互化:
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
③注意从语言叙述中写出相等关系:
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
④注意单位换算:
如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。