利用等式的性质解下列方程.(1)5x-7=3.(2)-3x+6=8.(3)12y+2=3.(4)0.2m-1=2.4.-数学

首页 > 考试 > 数学 > 初中数学 > 等式的性质/2019-03-07 / 加入收藏 / 阅读 [打印]

题文

利用等式的性质解下列方程.
(1)5x-7=3.
(2)-3x+6=8.
(3)
1
2
y+2=3.
(4)0.2m-1=2.4.
题型:解答题  难度:中档

答案

(1)5x-7=3,
方程两边都加7:5x-7+7=3+7,
方程两边都除以5,5x÷5=10÷5,
x=2;
(2)-3x+6=8,
方程两边都减6:-3x+6-6=8-6,
方程两边都除以-3:-3x÷(-3)=2÷(-3),
x=-
2
3

(3)
1
2
y+2=3,
方程两边都减2,:
1
2
y+2-2=3-2,
1
2
y=1,
方程两边都乘2:
1
2
y?2=1×2,
y=2;
(4)0.2m-1=2.4,
方程两边都加1:0.2m-1+1=2.4+1,
0.2m=3.4,
方程两边都乘5:0.2m×5=3.4×5,
m=17.

据专家权威分析,试题“利用等式的性质解下列方程.(1)5x-7=3.(2)-3x+6=8.(3)12y+2=3.(4)..”主要考查你对  等式的性质  等考点的理解。关于这些考点的“档案”如下:

等式的性质

考点名称:等式的性质

  • 等式:
    含有等号的式子叫做等式(数学术语)。
    形式:把相等的两个数(或字母表示的数)用“=”连接起来。
    等式可分为矛盾等式和条件等式。矛盾等式就是左右两边不相等的"等式"。也就是不成立的等式,比如5+2=8,实际上5+2=7,所以5+2=8是一个矛盾等式.有些式子无法判断是不是矛盾等式,比如x-9=2,只有x=11时这个等式才成立(这样的等式叫做条件等式),x≠11时,这个等式就是矛盾等式。

  • 等式的性质:
    1.等式两边同加上(或减去)同一个数或同一个整式,所得结果仍是等式。
    即若a=b,则a±m=b±m。
    2.等式两边同乘以(或除以)同一个数(除数不能为零),所得结果仍是等式。
    即若a=b,则am=bm,(m≠0)。
    3.等式具有传递性。
    若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
    4.等式两边同时乘方(或开方),两边依然相等若a=b 那么有a^c=b^c 或(c次根号a)=(c次根号b)
    5.等式的对称性(若a=b,则b=a)。
    等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移项,运用了等式的性质1;去分母,运用了等式的性质2。
    运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。

  • 拓展
    1:等式两边同时被一个数或式子减,结果仍相等。
    如果a=b,那么c-a=c-b
    2:等式两边取相反数,结果仍相等。
    如果a=b,那么-a=-b
    3:等式两边不等于0时,被同一个数或式子除,结果仍相等。
    如果a=b≠0,那么c/a=c/b
    4:等式两边不等于0时,两边取倒数,结果仍相等。
    如果a=b≠0,那么1/a=1/b