若m、n互为相反数,则()A.mn<0B.mn>0C.mn≤0D.mn≥0-数学

首页 > 考试 > 数学 > 初中数学 > 相反数/2019-02-11 / 加入收藏 / 阅读 [打印]

题文

若m、n互为相反数,则(  )
A.mn<0B.mn>0C.mn≤0D.mn≥0
题型:单选题  难度:偏易

答案

∵m、n互为相反数,
∴m、n异号或m、n都为0,
∴mn≤0.
故选C.

据专家权威分析,试题“若m、n互为相反数,则()A.mn<0B.mn>0C.mn≤0D.mn≥0-数学-”主要考查你对  相反数,有理数乘法  等考点的理解。关于这些考点的“档案”如下:

相反数有理数乘法

考点名称:相反数

  • 相反数的定义:
    像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
    相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
    相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。

  • 相反数的特性:
    1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
    2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
    3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
    4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
    5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。


  •  

  • (互为)相反数的代数意义:
    1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
    2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
    3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。

    相反数的判别:
    我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。

    多重符号的化简:
    1、在一个数前面添加一个“+”好,所得的数与原数相同。
    2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
    3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:有理数乘法

  • 有理数乘法定义:
    求两个有理数因数的积的运算叫做有理数的乘法。

  • 有理数乘法的法则:
    (1)同号两数相乘,取正号,并把绝对值相乘;
    (2)异号两数相乘,取负号,并把绝对值相乘;
    (3)任何数与0相乘都得0。
    几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

    有理数乘法的运算律:
    (1)交换律:ab=ba;
    (2)结合律:(ab)c=a(bc);
    (3)分配律:a(b+c)=ab+ac。

  • 记住乘法符号法则:
    1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
    2.几个数相乘,只要有一个数为0,积就是0。

    乘法法则的推广:
    1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
    2.几个数相乘,有一个因数为零,积就为零;
    3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。

    有理数乘法的注意:
    1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
    2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
    3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐