已知x是13-2的相反数,y是13-2的倒数,求x2-xy+y2的值.-数学

首页 > 考试 > 数学 > 初中数学 > 相反数/2019-02-11 / 加入收藏 / 阅读 [打印]


倒数的特点
一个正实数(1除外)加上它的倒数 一定大于2。
理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
   b/a+(a-b)/a
=b×b/a×b+(a÷b-b×b)/ab
=(a×a-b×b+b×b)/ab
=a×a/a×b,
又因为a>b,
所以a·a>a·b,
所以a·a/a·b>1,
所以1+(a-b)/b+a·a/a·b>2,
所以一个正实数加上它的倒数一定大于2。
当b>a时也一样。
同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。

  • 考点名称:有理数的乘方

    • 有理数乘方的定义:
      求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
      22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
      ①习惯上把22叫做2的平方,把23叫做2的立方;
      ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

    • 乘方的性质:
      乘方是乘法的特例,其性质如下:
      (1)正数的任何次幂都是正数;
      (2)负数的偶次幂是正数,负数的奇次幂是负数;
      (3)0的任何(除0以外)次幂都是0;
      (4)a2是一个非负数,即a2≥0。

    • 有理数乘方法则:
      ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
      ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

      点拨:
      ①0的次幂没意义;
      ②任何有理数的偶次幂都是非负数;
      ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
      ④负数的乘方与乘方的相反数不同。

    • 乘方示意图:

    考点名称:最简二次根式

    • 最简二次根式定义:
      被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
      有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

    • 最简二次根式同时满足下列三个条件:
      (1)被开方数的因数是整数,因式是整式;
      (2)被开方数中不含有能开的尽的因式;
      (3)被开方数不含分母。

    • 最简二次根式判定:
      ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
      ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

      化二次根式为最简二次根式的方法和步骤:
      ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
      ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。