-(-12-13)的相反数是()A.-12-13B.-12+13C.12-13D.12+13-数学

首页 > 考试 > 数学 > 初中数学 > 相反数/2019-02-11 / 加入收藏 / 阅读 [打印]

题文

-(-
1
2
-
1
3
)的相反数是(  )
A.-
1
2
-
1
3
B.-
1
2
+
1
3
C.
1
2
-
1
3
D.
1
2
+
1
3
题型:单选题  难度:中档

答案

-(-
1
2
-
1
3
)的相反数是-
1
2
-
1
3

故选A.

据专家权威分析,试题“-(-12-13)的相反数是()A.-12-13B.-12+13C.12-13D.12+13-数学-魔方..”主要考查你对  相反数,有理数减法  等考点的理解。关于这些考点的“档案”如下:

相反数有理数减法

考点名称:相反数

  • 相反数的定义:
    像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
    相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
    相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。

  • 相反数的特性:
    1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
    2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
    3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
    4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
    5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。


  •  

  • (互为)相反数的代数意义:
    1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
    2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
    3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。

    相反数的判别:
    我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。

    多重符号的化简:
    1、在一个数前面添加一个“+”好,所得的数与原数相同。
    2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
    3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:有理数减法

  • 有理数的减法:
    已知两个有理数加数的和与其中的一个加数,求另一个加数的运算,叫做有理数的减法,减法是加法的逆运算。

  • 有理数的减法法则:
    减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
    两变:减法运算变加法运算,减数变成它的相反数。
    一不变:被减数不变。可以表示成: a-b=a+(-b)。

    计算步骤:
    (1)把减法变为加法;
    (2)按加法法则进行。

  • 有理数减法点拨:
    1.引进负数之后,对于任意两个有理数都可以求出其差,不存在“不够减”的问题,并有如下结论:
    大数减小数,差为正数;
    小数减大数,差为负数;
    某数减去零,差为某数;
    零减去某数,差为某数的相反数;
    相等两数相减,差为零。

    2.在减法转化为加法时,减数必须同时变成其相反数,即“同时改变两个符号”。