若,则点P(x,y)在第_____________象限。-七年级数学
二、换元法
例:解方程组:
(x+5)+(y-4)=8
{
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
三、设参数法
例:解方程组:
x:y=1:4
{
5x+6y=29
令x=t,y=4t
方程2可写为:5t+6×4t=29
29t=29
t=1
所以x=1,y=4
四、图像法
二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,
两条直线的交点坐标即二元一次方程组的解。
考点名称:二元一次方程组的应用
- 二元一次方程组应用中常见的相等关系:
1. 行程问题(匀速运动)
基本关系:s=vt
①相遇问题(同时出发):
确定行程过程中的位置路程
相遇路程÷速度和=相遇时间
相遇路程÷相遇时间= 速度和
相遇问题(直线)
甲的路程+乙的路程=总路程
相遇问题(环形)
甲的路程 +乙的路程=环形周长
②追及问题(同时出发):
追及时间=路程差÷速度差
速度差=路程差÷追及时间
追及时间×速度差=路程差
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长
③水中航行
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速:(顺水速度-逆水速度)÷2
2.配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3.增长率问题
4.工程问题
基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。
5.几何问题
①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
②注意语言与解析式的互化:
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
③注意从语言叙述中写出相等关系:
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
④注意单位换算:
如,“小时”“分钟”的换算;s、v、t单位的一致等。 二元一次方程组的应用:
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:解方程组-七年级数学
下一篇:上海世博会中国馆推出A、B、C三种特价玩具,若购买A种2件,B种1件,C种3件共需23元,若购买A种1件,B种4件,C种5件共需36元,那么小明买A种1件,B种2件,C种3件,共需付款()-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |