(1)计算:8﹣23÷(﹣4)×(﹣7+5)(2)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3(3)解方程:(4)-七年级数学

题文

(1)计算:8﹣23÷(﹣4)×(﹣7+5)
(2)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3
(3)解方程:
(4)
题型:计算题  难度:中档

答案

解:(1)原式=8﹣23÷(﹣4)×(﹣2)=8﹣8÷(﹣4)×(﹣2)=8;
(2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,把a=﹣2,b=3代入得,3a2b﹣ab2=3×(﹣2)2×3﹣(﹣2)×32=36+18=54;
(3)去分母得,3(x+1)﹣2(2﹣3x)=6,去括号得,3x+3﹣4+6x=6,移项得,3x+6x=6+4﹣3,合并同类项得,9x=7,系数化为1得,x=
(4),①×3+②×2得,13x=52,x=4,把x=4代入①得,3×4﹣2y=6,解得y=3,故此方程组的解为:

据专家权威分析,试题“(1)计算:8﹣23÷(﹣4)×(﹣7+5)(2)先化简下式,再求值:5(3a2b﹣ab2)﹣4(..”主要考查你对  二元一次方程组的解法,有理数的混合运算,整式的加减,一元一次方程的解法  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的解法有理数的混合运算整式的加减一元一次方程的解法

考点名称:二元一次方程组的解法

  • 二元一次方程组的解:
    使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。

  • 二元一次方程组解的情况:
    一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:
    1、有一组解。如方程组:
    x+y=5①
    6x+13y=89②
    x=-24/7
    y=59/7 为方程组的解

    2、有无数组解。如方程组:
    x+y=6①
    2x+2y=12②
    因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

    3、无解。如方程组:
    x+y=4①
    2x+2y=10②,
    因为方程②化简后为
    x+y=5
    这与方程①相矛盾,所以此类方程组无解。

    可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:
    ax+by=c
    dx+ey=f
    当a/d≠b/e 时,该方程组有一组解。
    当a/d=b/e=c/f 时,该方程组有无数组解。
    当a/d=b/e≠c/f 时,该方程组无解。

  • 二元一次方程组的解法:
    解方程的依据—等式性质
    1.a=b←→a+c=b+c
    2.a=b←→ac=bc (c>0)

    一、消元法
    1)代入消元法
    用代入消元法的一般步骤是:
    ①选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
    ②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
    ③解这个一元一次方程,求出 x 或 y 值;
    ④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
    ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
    例:解方程组 :
         x+y=5①

         6x+13y=89②
    解:由①得
    x=5-y③
    把③代入②,得
    6(5-y)+13y=89
    即 y=59/7
    把y=59/7代入③,得
    x=5-59/7
    即 x=-24/7
    ∴ x=-24/7
    y=59/7 为方程组的解
    我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

    2)加减消元法
    用加减法消元的一般步骤为:
    ①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
    ②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),
    再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
    ③解这个一元一次方程;
    ④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
    ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
    例:解方程组:
         x+y=9①

         x-y=5②
    解:①+②
    2x=14
    即 x=7
    把x=7代入①,得
    7+y=9
    解,得:y=2
    ∴ x=7
    y=2 为方程组的解
    利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。像这种解二元一次方程组的方法叫做加减消元法,简称加减法。

    3)加减-代入混合使用的方法
    例:解方程组:
         13x+14y=41①

         14x+13y=40 ②
    解:②-①得
    x-y=-1
    x=y-1 ③
    把③ 代入①得
    13(y-1)+14y=41
    13y-13+14y=41
    27y=54
    y=2
    把y=2代入③得
    x=1
    所以:x=1,y=2
    特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

    二、换元法
    例:解方程组:
       (x+5)+(y-4)=8

       (x+5)-(y-4)=4
    令x+5=m,y-4=n
    原方程可写为
    m+n=8
    m-n=4
    解得m=6,n=2
    所以x+5=6,y-4=2
    所以x=1,y=6
    特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

    三、设参数法
    例:解方程组:
          x:y=1:4

         5x+6y=29
    令x=t,y=4t
    方程2可写为:5t+6×4t=29
    29t=29
    t=1
    所以x=1,y=4

    四、图像法
    二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,
    两条直线的交点坐标即二元一次方程组的解。

考点名称:有理数的混合运算

  • 有理数的混合运算:
    是一个运算式子中有加有减有乘有除有次方等运算方式的混合运算方式。

  • 有理数混合运算的规律:
    (1)先乘方,再乘除,最后加减;
    (2)同级运算,从左到右进行;
    (3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行计算。

考点名称:整式的加减

  • 整式的加减:
    其实质是去括号和合并同类项,其一般步骤为:
    (1)如果有括号,那么先去括号;
    (2)如果有同类项,再合并同类项。
    注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。

  • 整式加减:
    整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。
    合并同类项时要注意以下三点:
    ①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
    ②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
    ③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。

  • 整式的乘除法:

考点名称:一元一次方程的解法

  • 使方程左右两边相等的未知数的值叫做方程的解。

  • 解一元一次方程的注意事项:
    1、分母是小数时,根据分数的基本性质,把分母转化为整数;
    2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
    3、去括号时,不要漏乘括号内的项,不要弄错符号;
    4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
    5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
    6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
    7、分、小数运算时不能嫌麻烦;
    8、不要跳步,一步步仔细算 。

  • 解一元一次方程的步骤:
    一般解法:
    ⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
    依据:等式的性质2
    ⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐