(1)解方程:(x-1)2=4(2)解方程组:x+y=1①2x-y=-4②.-数学
题文
(1)解方程:(x-1)2=4 (2)解方程组:
|
答案
(1)方程两边直接开方得,x-1=±2, 解得x=3或-1; (2)①+②得:x=-1 把x=-1代入①得:y=2 故原方程组的解为
|
据专家权威分析,试题“(1)解方程:(x-1)2=4(2)解方程组:x+y=1①2x-y=-4②.-数学-”主要考查你对 二元一次方程组的解法,平方根 等考点的理解。关于这些考点的“档案”如下:
二元一次方程组的解法平方根
考点名称:二元一次方程组的解法
- 二元一次方程组的解:
使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。 - 二元一次方程组解的情况:
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:
1、有一组解。如方程组:
x+y=5①
6x+13y=89②
x=-24/7
y=59/7 为方程组的解
2、有无数组解。如方程组:
x+y=6①
2x+2y=12②
因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3、无解。如方程组:
x+y=4①
2x+2y=10②,
因为方程②化简后为
x+y=5
这与方程①相矛盾,所以此类方程组无解。
可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:
ax+by=c
dx+ey=f
当a/d≠b/e 时,该方程组有一组解。
当a/d=b/e=c/f 时,该方程组有无数组解。
当a/d=b/e≠c/f 时,该方程组无解。 - 二元一次方程组的解法:
解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c>0)
一、消元法
1)代入消元法
用代入消元法的一般步骤是:
①选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
③解这个一元一次方程,求出 x 或 y 值;
④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组 :
x+y=5①
{
6x+13y=89②
解:由①得
x=5-y③
把③代入②,得
6(5-y)+13y=89
即 y=59/7
把y=59/7代入③,得
x=5-59/7
即 x=-24/7
∴ x=-24/7
y=59/7 为方程组的解
我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。
2)加减消元法
用加减法消元的一般步骤为:
①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),
再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
③解这个一元一次方程;
④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
例:解方程组:
x+y=9①
{
x-y=5②
解:①+②
2x=14
即 x=7
把x=7代入①,得
7+y=9
解,得:y=2
∴ x=7
y=2 为方程组的解
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。像这种解二元一次方程组的方法叫做加减消元法,简称加减法。
3)加减-代入混合使用的方法
例:解方程组:
13x+14y=41①
{
14x+13y=40 ②
解:②-①得
x-y=-1
x=y-1 ③
把③ 代入①得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入③得
x=1
所以:x=1,y=2
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。
二、换元法
例:解方程组:
(x+5)+(y-4)=8
{
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
三、设参数法
例:解方程组:
x:y=1:4
{
5x+6y=29
令x=t,y=4t
方程2可写为:5t+6×4t=29
29t=29
t=1
所以x=1,y=4
四、图像法
二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,
两条直线的交点坐标即二元一次方程组的解。
考点名称:平方根
- 平方根定义:
如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。 性质:
①一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
的算术平方根记为,读作“根号a”,a叫做被开方数。③规定:0的平方根是0。
④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
例如:-1的平方根为±1,-9的平方根为±3。
⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
平方根和算术平方根都只有非负数才有。
被开方数是乘方运算里的幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x- 1 至 20 的平方根:
利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
=1 ≈1.414213562373095048801688724209698078569671875376948073176679737990732478462 ≈1.732050807568877293527446341505872366942805253810380628055806979451933016909 =2 - 最新内容
- 相关内容
- 网友推荐
- 图文推荐
- 已知直线y=x-3与y=2x+2的交点为(-(2019-03-10)
- 解方程组:-八年级数学(2019-03-10)
- 小亮解方程组的解为,由于不小心,(2019-03-10)
- 已知直线y=x-3与y=2x+2的交点为(-(2019-03-10)
- 解方程组:-八年级数学(2019-03-10)
- 下图是一个正方体的平面展开图。已(2019-03-10)
- 方程组:的解是()。-九年级数学(2019-03-10)
- 解方程组:-九年级数学(2019-03-10)
- 解方程组:-九年级数学(2019-03-10)
无相关信息- 若方程组的解x,y满足0<x+y<1,则k(2019-03-10)
- 若一次函数y=2x+3与y=3x+5的交点坐(2019-03-10)
- 解方程组:(1)3x-4y=5x+3y=6;((2019-03-10)
- 已知x,y满足方程组,则x﹣y的值是(2019-03-10)
- 已知方程组ax-by=42x+3y=4与ax+by=(2019-03-10)
- 用代入法解方程组的最佳策略是[]A.(2019-03-10)
- 已知方程组5x+4y=-3ax+5y=4与x-2y=(2019-03-10)
- 写出一个二元一次方程,使它的一个(2019-03-10)
- 解方程组(1)(2)-七年级数学(2019-03-10)
- 方程组:2x-y=3①x+y=3②的解是()(2019-03-10)
上一篇:方程组中,用①3x-y=42x+5y=4;②4x-3y=05x+3y=4;③2x+5x=12x-3y=-5;④3x-2y=13y-2x=4,“加减法”解较为简便的是()A.①④B.①②C.②③D.①③-数学 下一篇:方程组3x+5y=m+22x+3y=m的解x、y满足x>y,求m的取值范围.-数学零零教育社区:论坛热帖子[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) [教师分享] 给远方姐姐的一封信 (2018-11-07) [教师分享] 伸缩门 (2018-11-07) [教师分享] 回家乡 (2018-11-07) [教师分享] 是风味也是人间 (2018-11-07) [教师分享] 一句格言的启示 (2018-11-07) [教师分享] 无规矩不成方圆 (2018-11-07) [教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) [教师分享] 贪玩的小狗 (2018-11-07) [教师分享] 未命名文章 (2018-11-07)