如果最简根式2a+32a+5b和3b+2a-2b+8是同类根式,那么a-10b的值是______.-数学

题文

如果最简根式
2a+32a+5b

3b+2a-2b+8

是同类根式,那么a-10b的值是______.
题型:填空题  难度:中档

答案

∵最简根式
2a+32a+5b

3b+2a-2b+8

是同类根式,
∴2a+3=3b+2,2a+5b=a-2b+8,
解得:a=1,b=1,
∴a-10b=-9.
故答案为:-9.

据专家权威分析,试题“如果最简根式2a+32a+5b和3b+2a-2b+8是同类根式,那么a-10b的值是..”主要考查你对  二元一次方程组的解法,同类二次根式  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的解法同类二次根式

考点名称:二元一次方程组的解法

  • 二元一次方程组的解:
    使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。

  • 二元一次方程组解的情况:
    一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:
    1、有一组解。如方程组:
    x+y=5①
    6x+13y=89②
    x=-24/7
    y=59/7 为方程组的解

    2、有无数组解。如方程组:
    x+y=6①
    2x+2y=12②
    因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

    3、无解。如方程组:
    x+y=4①
    2x+2y=10②,
    因为方程②化简后为
    x+y=5
    这与方程①相矛盾,所以此类方程组无解。

    可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:
    ax+by=c
    dx+ey=f
    当a/d≠b/e 时,该方程组有一组解。
    当a/d=b/e=c/f 时,该方程组有无数组解。
    当a/d=b/e≠c/f 时,该方程组无解。

  • 二元一次方程组的解法:
    解方程的依据—等式性质
    1.a=b←→a+c=b+c
    2.a=b←→ac=bc (c>0)

    一、消元法
    1)代入消元法
    用代入消元法的一般步骤是:
    ①选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
    ②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
    ③解这个一元一次方程,求出 x 或 y 值;
    ④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
    ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
    例:解方程组 :
         x+y=5①

         6x+13y=89②
    解:由①得
    x=5-y③
    把③代入②,得
    6(5-y)+13y=89
    即 y=59/7
    把y=59/7代入③,得
    x=5-59/7
    即 x=-24/7
    ∴ x=-24/7
    y=59/7 为方程组的解
    我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

    2)加减消元法
    用加减法消元的一般步骤为:
    ①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
    ②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),
    再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
    ③解这个一元一次方程;
    ④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
    ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
    例:解方程组:
         x+y=9①

         x-y=5②
    解:①+②
    2x=14
    即 x=7
    把x=7代入①,得
    7+y=9
    解,得:y=2
    ∴ x=7
    y=2 为方程组的解
    利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。像这种解二元一次方程组的方法叫做加减消元法,简称加减法。

    3)加减-代入混合使用的方法
    例:解方程组:
         13x+14y=41①

         14x+13y=40 ②
    解:②-①得
    x-y=-1
    x=y-1 ③
    把③ 代入①得
    13(y-1)+14y=41
    13y-13+14y=41
    27y=54
    y=2
    把y=2代入③得
    x=1
    所以:x=1,y=2
    特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

    二、换元法
    例:解方程组:
       (x+5)+(y-4)=8

       (x+5)-(y-4)=4
    令x+5=m,y-4=n
    原方程可写为
    m+n=8
    m-n=4
    解得m=6,n=2
    所以x+5=6,y-4=2
    所以x=1,y=6
    特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

    三、设参数法
    例:解方程组:
          x:y=1:4

         5x+6y=29
    令x=t,y=4t
    方程2可写为:5t+6×4t=29
    29t=29
    t=1
    所以x=1,y=4

    四、图像法
    二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,
    两条直线的交点坐标即二元一次方程组的解。

考点名称:同类二次根式

  • 化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式。
    一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。
    要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。

  • 同类二次根式与同类项的异同:
    同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。
    相同点
    1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。
    2. 两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。
    不同点
    1. 判断准则不同。
    判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。
    2. 合并形式不同。