椐报道,2007年“五一”黄金周宜昌市共接待游客约80万人,旅游总收入约2.56亿元,其中县区接待的游客人数占全市接待的游客人数的60%,而游客人均旅游消费(旅游总收入÷旅游总人-九年级数学
题文
椐报道,2007年“五一”黄金周宜昌市共接待游客约80万人,旅游总收入约2.56亿元,其中县区接待的游客人数占全市接待的游客人数的60%,而游客人均旅游消费(旅游总收入÷旅游总人数)比城区接待的游客人均旅游消费少50元。 (1)2007年“五一”黄金周,宜昌市城区与县区的旅游收入分别是多少万元? (2)预计2008年“五一”黄金周与2007年同期相比,全市旅游总收入增长的百分数是游客人均旅游消费增长百分数的2.59倍,游客人数增长的百分数是游客人均旅游消费增长百分数的1.5倍。请估计2008年“五一”黄金周全市的旅游总收入是多少亿元?(保留3个有效数字) |
答案
解:(1)2.56亿=25600万, 设城区与县区旅游收入分别为x万元和y万元,依据题意可列方程组: ,解得, 答:城区与县(市)区的旅游收入分别是11200万元和14400万元; (2)设2008年与2007年相比,游客人均旅游消费增长的百分数为z, 则旅游总收入增长的百分数为2.59z,旅游人数增长的百分数为1.5z, 依据题意可列方程:(1+z)×80(1+1.5z)=25600(1+2.59z) 化简并整理得:1.5z2-0.09z=0, 解得:z=0.06或z=0(舍去) 2008年“五·一”黄金周宜昌市的旅游总收入为: 25600(1+2.59z)=25600×(1+0.1554)=29578.24(万元)=2.957824(亿元)≈2.96(亿元) 答:估计2008年“五·一”黄金周全市的旅游总收入是2.96亿元。 |
据专家权威分析,试题“椐报道,2007年“五一”黄金周宜昌市共接待游客约80万人,旅游总收..”主要考查你对 二元一次方程组的应用,一元二次方程的应用 等考点的理解。关于这些考点的“档案”如下:
二元一次方程组的应用一元二次方程的应用
考点名称:二元一次方程组的应用
- 二元一次方程组应用中常见的相等关系:
1. 行程问题(匀速运动)
基本关系:s=vt
①相遇问题(同时出发):
确定行程过程中的位置路程
相遇路程÷速度和=相遇时间
相遇路程÷相遇时间= 速度和
相遇问题(直线)
甲的路程+乙的路程=总路程
相遇问题(环形)
甲的路程 +乙的路程=环形周长
②追及问题(同时出发):
追及时间=路程差÷速度差
速度差=路程差÷追及时间
追及时间×速度差=路程差
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长
③水中航行
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速:(顺水速度-逆水速度)÷2
2.配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3.增长率问题
4.工程问题
基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。
5.几何问题
①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
②注意语言与解析式的互化:
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
③注意从语言叙述中写出相等关系:
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
④注意单位换算:
如,“小时”“分钟”的换算;s、v、t单位的一致等。 二元一次方程组的应用:
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
考点名称:一元二次方程的应用
- 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。
列一元二次次方程组解应用题的一般步骤:
可概括为“审、设、列、解、答”五步,即:
(1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
(2)设:是指设未知数;
(3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
(4)解:解这个方程,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
提示:
①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。
常见题型公式:
工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。利润赢亏问题
销售问题中常出现的量有:进价、售价、标价、利润等
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率存款利率问题:
利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)行程问题:
基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
路程=速度×时间。
①相遇问题:快行距+慢行距=原距;
②追及问题:快行距-慢行距=原距;
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
逆水(风)速度=静水(风)速度-水流(风)速度
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |