甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y千米/时,列出的二元一次方-数学
题文
甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y千米/时,列出的二元一次方程组为______. |
题文
甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y千米/时,列出的二元一次方程组为______. |
题型:填空题 难度:偏易
答案
根据甲走6小时的路程+乙走6小时的路程=42,得方程6(x+y)=42; 根据乙走14小时的路程=甲走14小时的路程+42,得方程14y=14x+42. 可列方程组为
|
据专家权威分析,试题“甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而..”主要考查你对 二元一次方程组的应用 等考点的理解。关于这些考点的“档案”如下:
二元一次方程组的应用
考点名称:二元一次方程组的应用
二元一次方程组的应用:
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |