2010年4月14日7时49分在我国青海省玉树发生里氏7、1级的强烈地震,灾情牵动全国人民的心,“大爱无疆,心系玉树”.某地区计划为灾人民区搭建A、B两种型号的帐篷300顶,其中A型-数学

题文

2010年4月14日7时49分在我国青海省玉树发生里氏7、1级的强烈地震,灾情牵动全国人民的心,“大爱无疆,心系玉树”.某地区计划为灾人民区搭建A、B两种型号的帐篷300顶,其中A型帐篷可供3人居住;B型帐篷可供10人居住,正好可供2300人临时居住.
(1)求该地区搭建A型、B型帐篷各多少间?
(2)该地区计划租用甲乙两种型号的卡车共20辆将这批帐篷紧急送往灾区,已知甲型卡车每辆可同时装运4顶A帐篷和11顶B帐篷;乙型卡车每辆可同时装运12顶A帐篷和7顶B帐篷.能否安排甲乙两种卡车恰好一次性将这批帐篷送往灾区?如果不能,请你说出一种方案把这批帐篷一次性运往灾区(只要写出一种即可)?
题型:解答题  难度:中档

答案

(1)求该地区搭建A型帐篷x顶,B型帐篷y顶,根据题意,得

x+y=300
3x+10y=2300

解这个方程组得

x=100
y=200
,且符合实际;
答:求该地区搭建A型帐篷100顶,B型帐篷200顶.
(2)设甲型卡车安排了a辆.则乙型卡车安排了b辆根据题意,得

4a+12b=100
11a+7b=200
解这个方程组得

a=
850
57
b=
150
57

∵车辆数a,b为正整数,不合题意,
∴不能安排甲乙两种卡车恰好一次性将这批帐篷送往灾区;
一次性送完的安排方案有:①甲型卡车15辆,乙型卡车5辆;②甲型卡车16辆,乙型卡车4辆:③甲型卡车17辆,乙型卡车3辆.(写出一种即可)

据专家权威分析,试题“2010年4月14日7时49分在我国青海省玉树发生里氏7、1级的强烈地震..”主要考查你对  二元一次方程组的应用  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的应用

考点名称:二元一次方程组的应用

  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。