在比例尺为1:3000的我校规划图上,矩形运动场的图上尺寸是1cm×2cm,则运动场的实际面积______米2.-数学

题文

在比例尺为1:3000的我校规划图上,矩形运动场的图上尺寸是1cm×2cm,则运动场的实际面积______米2
题型:填空题  难度:偏易

答案

设矩形运动场的实际尺寸为宽Xm,长Ym.
由比例尺为1:3000,
列出方程为

1
3000
=
0.01
X
1
3000
=
0.02
Y

解得

X=30
Y=60

即长为60m,宽为30m,
则可得面积为1800米2

据专家权威分析,试题“在比例尺为1:3000的我校规划图上,矩形运动场的图上尺寸是1cm×2c..”主要考查你对  二元一次方程组的应用,比例的性质  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的应用比例的性质

考点名称:二元一次方程组的应用

  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

考点名称:比例的性质

  • 比例:
    在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。
    比例性质:
    比例的基本性质:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
    在比例里,两个外项的积等于两个内项的积。a:b=c:d\leftrightarrow ad=bc,则有
    证明:




    2.分比性质:
    在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:




    3.合分比性质:
    在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则




    4.等比性质:
    在一个比例等式中,两前项之和与两后项之和的比例与原比例相等。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则

  • 重要定理:


    比例尺:
    是表示图上距离比实地距离缩小的程度,因此也叫缩尺。
    用公式表示为:比例尺=图上距离/实地距离。
    1.数字式,用数字的比例式或分数式表示比例尺的大小。
    例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
    2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
    3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,
    如:图上1厘米相当于地面距离500千米,或五千万分之一。

    比例线段:
    1.两条线段的长度比叫做这两条线段的比。
    2.在同一单位下,四条线段长度为a、b、c、d,其关系为a∶b=c∶d,那么,这四条线段叫做成比例线段,简称比例线段。
    3.一般的,如果三个数a,b,c满足比例式a∶b=b∶c,则b就叫做a,c的比例中项。

  • 比例的美术术语:
    比例通常指物体之间形的大小、宽窄、高低的关系;另外比例也会在构图中用到,例如你在画一幅素描静物就要注意所有静物占用画面的大小关系。
    在画素描的过程中要想把形画准就要注意比例了。

    把握比例的几个技巧:
    1.横着比:当你要画某一个物体的位置时就以此做一条贯穿整个画面的横线,看到所有在这条线上的物体。
    2.竖着比:做一条贯穿画面的垂线,注意观察所有在这条线上的物体。
    3.多看物体、少看画面:为的是形成观察的意识,抛弃大脑中的原始概念。看物体5秒,看画面2秒,眼睛要在画面和物体之间反复的观察比较。
    4.总的说就是放长线、看整体、多比较。把这些想象成经线纬线一样会比较简单;初学者要多画辅助线,等功底深厚了你会发现你画面中的辅助线会越来越少,而你心里假象的辅助线会越来越多。

    在构图中要注意的比例关系技巧:一般被画物占画面百分之八十左右,看上去饱满。
    人物相关比例:
    1.三庭五眼:发际线-鼻底-下巴为三庭,这三段之间每段的距离大约相等;耳根-外眼角-内眼角-内眼角-外眼角-耳根为五眼,它们之间距离大约相等。
    2.站七坐五蹲三半:一个站着的成年人身高大约等于他七个头长(站七),当他座上时就等于五个头长(坐五),蹲着时刚好是三个半头长(三头)。
    3.小孩的头部比例较大,站着时一般为三到四个头高。
    4.张开双臂,两个中指之间的长度大约等于这个人的身高。
    5.手臂的长度为两个头长(腋窝-胳膊肘-手腕各位为一个头长)。
    6.手掌为三分之二头长。
    7.当举起胳膊时胳膊肘刚好到头顶。
    8.肩宽为两个头宽。
    9.脚掌为一个头长。
    10.男人肩比胯宽,而女人跨比肩宽。
    还有很多,可以在生活中多总结,多观察。这些都是标准人体比例,可以帮助初学者入门;
    也是艺术家创作英雄楷模人物绘画雕塑等艺术作品时的指导,例如米开朗基罗的大卫是七个半头高。在现实生活中有形形色色的人,在进行人物素描时就应当个别观察,抓住特征。