有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的.每把楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作连接点(如点A-数学
题文
有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的.每把楼梯的扶杆长 (即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作连接点(如点A). (1)通过计算,补充填写下表:
|
题文
有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的.每把楼梯的扶杆长 (即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作连接点(如点A). (1)通过计算,补充填写下表:
|
题型:解答题 难度:中档
答案
(1)七步梯、九步梯的扶杆长分别是5米、6米; 横档总长分别是:
连接点个数分别是14个、18个; (2)设扶杆单价为x元/米,横档单价为y元/米, 依题意得:
即
解得
故九步梯的成本为6×3+5.4×2+1×18=46.8(元), 答:一把九步梯的成本为46.8元. |
据专家权威分析,试题“有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升..”主要考查你对 二元一次方程组的应用 等考点的理解。关于这些考点的“档案”如下:
二元一次方程组的应用
考点名称:二元一次方程组的应用
二元一次方程组的应用:
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |