某校在“五?一”期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.(1)求外出旅游的学生人数是多少单租45-数学

题文

某校在“五?一”期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.
(1)求外出旅游的学生人数是多少单租45座客车需多少辆?
(2)已知45座客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都能有座,决定同时租用两种客车.使得租车总数可比单租45座客车少一辆,问45座客车和60座客车分别租多少辆才能使得租金最少?
题型:解答题  难度:中档

答案

(1)设学生人数为x人,单租45座客车为y辆,
由题意,得

x=45y
x=60(y-1)-30
(2分)
解,得

x=270
y=6

答:学生总人数为270人,单租45座客车需6辆.(4分)

(2)(解法一)由题意及(1)知:两种客车同时租用共需5辆.
设45座客车z辆,则60座客车为(5-z)辆.
要使每个学生都有座,需有45z+60(5-z)≥270.
解之,得z≤2.(6分)
当z=2时,租金为:2×250+3×300=1400(元);
当z=1时,租金为:1×250+4×300=1450(元).
答:由上可知:45座车租2辆,60座车租3辆使得租金最少.(8分)

(解法二)由题意,根据(1)知,两种客车共租5辆,其方案有
145座车1辆,60座车4辆;
245座车2辆,60座车3辆;
345座车3辆,60座车2辆;
445座车4辆,60座车1辆.(6分)
其中:方案①共有:1×45+4×60=285(座),
租金:1×250+4×300=1450(元);
方案②共有:2×45+3×60=270(座),
租金:2×250+3×300=1400(元);
方案③共有:3×45+2×60=255(座),不能满足每人都有座;
方案④共有:4×45+60=240(座),不能满足每人都有座.
由上可知方案②最好.
答:租245座车2辆,60座车3辆租金最少.(8分)

据专家权威分析,试题“某校在“五?一”期间组织学生外出旅游,如果单独租用45座的客车若干..”主要考查你对  二元一次方程组的应用  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的应用

考点名称:二元一次方程组的应用

  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐