某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支l0元.文教店在销售时甲种钢笔售价为每支l5元,乙种钢笔售价为每支l2元,全部售完后共-数学
题文
某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支l0元.文教店在销售时甲种钢笔售价为每支l5元,乙种钢笔售价为每支l2元,全部售完后共获利270元. (1)求这个文教店购进甲、乙两种钢笔各多少支? (2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元? |
答案
(1)设文具店购进甲种钢笔x支,乙种钢笔y支,由题意,得
解得
答:这个文具店购进甲种钢笔50支,乙种钢笔60支. (2)设甲种钢笔每只的最低售价为m元,由题意,得 50(m-12)+2×60(12-10)≥340, 解得:m≥14. 故甲种钢笔每只的最低售价为14元. |
据专家权威分析,试题“某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支1..”主要考查你对 二元一次方程组的应用,一元一次不等式的应用 等考点的理解。关于这些考点的“档案”如下:
二元一次方程组的应用一元一次不等式的应用
考点名称:二元一次方程组的应用
- 二元一次方程组应用中常见的相等关系:
1. 行程问题(匀速运动)
基本关系:s=vt
①相遇问题(同时出发):
确定行程过程中的位置路程
相遇路程÷速度和=相遇时间
相遇路程÷相遇时间= 速度和
相遇问题(直线)
甲的路程+乙的路程=总路程
相遇问题(环形)
甲的路程 +乙的路程=环形周长
②追及问题(同时出发):
追及时间=路程差÷速度差
速度差=路程差÷追及时间
追及时间×速度差=路程差
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长
③水中航行
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速:(顺水速度-逆水速度)÷2
2.配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3.增长率问题
4.工程问题
基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。
5.几何问题
①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
②注意语言与解析式的互化:
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
③注意从语言叙述中写出相等关系:
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
④注意单位换算:
如,“小时”“分钟”的换算;s、v、t单位的一致等。 二元一次方程组的应用:
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
考点名称:一元一次不等式的应用
- 一元一次不等式的应用包括两个方面:
1、通过一元一次不等式求字母的取值范围;
2、列一元一次不等式解实际应用题。 - 列不等式解应用题的一般步骤:
(1)审题;
(2)设未知数;
(3)确定包含未知数的不等量关系;
(4)列出不等式;
(5)求出不等式的解集,检验不等式的解是否符合题意;
(6)写出答案。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |