已知点A(k+1,2)在双曲线y=kx上,试判断双曲线y=kx与直线y=x+1有无交点.-数学

题文

已知点A(k+1,2)在双曲线y=
k
x
上,试判断双曲线y=
k
x
与直线y=x+1有无交点.
题型:解答题  难度:中档

答案

由题意得,2=
k
k+1

解得k=-2,
解方程组:

y=x+1①
y=
-2
x

把①代入②后整理得:x2+x+2=0,
△=b2-4ac=12-4×1×2=-7<0,
故双曲线y=
-2
x
与y=x+1无交点.

据专家权威分析,试题“已知点A(k+1,2)在双曲线y=kx上,试判断双曲线y=kx与直线y=x+1有..”主要考查你对  二元一次方程的解法,反比例函数的图像,求反比例函数的解析式及反比例函数的应用,一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

二元一次方程的解法反比例函数的图像求反比例函数的解析式及反比例函数的应用一元二次方程根的判别式

考点名称:二元一次方程的解法

  • 二元一次方程的解:
    使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

  • 二元一次方程解法:
    二元一次方程有无数个解,除非题目中有特殊条件。
    一、消元法
    “消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
    如:5x+6y=7 2x+3y=4,变为5x+6y=7 4x+6y=8
    消元方法:
    代入消元法(常用)
    加减消元法(常用)
    顺序消元法(这种方法不常用)
    例:
        x-y=3 ①

        3x-8y=4②
    由①得x=y+3③
    ③代入②得
    3(y+3)-8y=4
    y=1
    所以x=4
    则:这个二元一次方程组的解
        x=4

        y=1

    (一)加减-代入混合使用的方法.
    例:
         13x+14y=41 ①
    {      
         14x+13y=40②
    ②-①得
    x-y=-1
    x=y-1 ③
    把③代入①得
    13(y-1)+14y=41
    13y-13+14y=41
    27y=54
    y=2
    把y=2代入③得
    x=1
    所以:x=1,y=2
    最后 x=1 ,y=2, 解出来
    特点:两方程相加减,得到单个x或单个y,适用接下来的代入消元。

    (二)代入法
    是二元一次方程的另一种方法,就是说把一个方程带入另一个方程中
    如:
    x+y=590
    y+20=90%x
    带入后就是:
    x+90%x-20=590
    (x+5)+(y-4)=8
    (x+5)-(y-4)=4
    令x+5=m,y-4=n
    原方程可写为
    m+n=8
    m-n=4
    解得m=6,n=2
    所以x+5=6,y-4=2
    所以x=1,y=6
    特点:两方程中都含有相同的代数式(x+5,y-4),换元后可简化方程。

    (三)另类换元
    例:
    x:y=1:4①
    5x+6y=29②
    令x=t,y=4t
    方程2可写为:5t+24t=29
    29t=29
    t=1
    所以x=1,y=4

    二、换元法
    解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
    换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
    它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
    如:
    (x+y)/2-(x-y)/3=6
    3(x+y)=4(x-y)
    解:
    设x+y为a,x-y为b
    原=a/2-b/3=6①
    3a=4b②
    ①×6 得3a-2b=36③
    把②代入③ 得2b=36 b=18
    把b=18代入②得a=24
    所以x+y=24④
    x-y=18⑤
    ④-⑤得 2y=6 y=3
    把y=3代入④得 x=21
    x=21,y=3
    是方程组的解

    整体代入
    如:
    2x+5y=15①
    85-7y=2x②
    解:把②代入①得
    85-7y+5y=15
    -2y=-70
    y=35
    把y=35代入②
    得x=-80
    x=-80,y=35
    是方程组的解

  • 二元一次方程有两个正根的特点:
    二元一次方程ax2+bx+c=0(a≠0)
    有两个正跟要满足下列3个条件
    1、保证有两个跟,即:△≥0,也就是b2-4ac≥0
    2、x1+x2>0,即 —b/a>0
    3、x1×x2>0,即c/a>0
    然后根据所给的条件在求出题目中要求的某些字母的值

    二元一次方程整数解存在的条件:
    在整系数方程ax+by=c中,
    若a,b的最大公约数能整除c,则方程有整数解。即
    如果(a,b)|c 则方程ax+by=c有整数解
    显然a,b互质时一定有整数解。
    例如方程
    3x+5y=1, 
    5x-2y=7, 
    9x+3y=6都有整数解。
    返过来也成立,方程
    9x+3y=10和
    4x-2y=1都没有整数解,
    ∵(9,3)=3,而3不能整除10;
    (4,2)=2,而2不能整除1。
    一般我们在正整数集合里研究公约数,(a,b)中的a,b实为它们的绝对值。

    二元一次方程整数解的方法:
    ①首先用一个未知数表示另一个未知数,如y=10-2x;
    ②给定x一个值,求y的一个对应值,就可以得到二元一次方程的一组解;
    ③根据提议对未知数x、y做出限制,确定x的可能取值,确定二元一次方程所有的整数解。

考点名称:反比例函数的图像

  • 反比例函数的图象:
    反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
    反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

  • 反比例函数图象的画法:
    1)列表:

    (2)描点:在平面直角坐标系中标出点。
    (3)连线:用平滑的曲线连接点。
    当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
    当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
    常见画法当两个数相等时那么曲线呈弯月型。

  • k的意义及应用:
    过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为
    研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
    所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

    推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。