下列各组数中,值不相等的是[]A.﹣(+2)与+(﹣2)B.+(﹣7)与﹣7C.+(﹣1)与﹣|﹣1|D.﹣|﹣3|与|﹣3|-七年级数学
题文
下列各组数中,值不相等的是 |
[ ] |
A.﹣(+2)与+(﹣2) B.+(﹣7)与﹣7 C.+(﹣1)与﹣|﹣1| D.﹣|﹣3|与|﹣3| |
答案
D |
据专家权威分析,试题“下列各组数中,值不相等的是[]A.﹣(+2)与+(﹣2)B.+(﹣7)与﹣7C.+(﹣1)..”主要考查你对 绝对值,去括号与添括号 等考点的理解。关于这些考点的“档案”如下:
绝对值去括号与添括号
考点名称:绝对值
- 绝对值定义:
在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值用“||”来表示。
在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。 - 绝对值的意义:
1、几何的意义:
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。
2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3. 绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
考点名称:去括号与添括号
- 去括号:即是按一定运算法则和顺序对算式进行脱括号的计算;
添括号:即是按一定运算法则和顺序对算式进行添加括号的计算。 - 变号与不变号:
去括号、添括号都存在一个“变号”与“不变号”的问题。正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错)。这些2.问题的关键是括号前的符号问题。
a.若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来;
b.添括号时,括号前添的是“+”号,被括起来的各项,也“不变号”进入括号就行了;
c.若括号前面是“-”号,不论是去括号或是添括号,都会遇到“改变符号”的问题的。另外,不论是去或添括号,括号前面的符号和括号是一个整体,不能分割开来,顾此失彼。
还有“变号”与“不变号”中都提到“各项”,要认真对待,不能只“变”或“不变”其中的一部分。 - 去括号依据及注意事项:
法则的依据实际是乘法分配律
注:
①要注意括号前面的符号,它是去括号后括号内各项是否变号的依据。
②去括号时应将括号前的符号连同括号一起去掉。
③要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。
④若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误。
⑤遇到多层括号一般由里到外,逐层去括号,也可由外到里数"-"的个数。 - 去括号法则:
1.括号前面有“+”号,把括号和它前面的“+”号去掉,括号里各项的符号不改变;
2.括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要变为相反的符号。
例:先去括号,再合并同类项
(1)5a-(2a-4b)
=5a-2a+4b
=3a+4b
(2)2x×2+3(2x-2)
=2x×2+6x-3x×2
= -2+6x
例:先去括号,再合并同类项
(1)a-(2a-b)-(a+2b)
=a-2a+b-a-2b
=-2a-b
(2)(x×2-y×2)-4(2x×2-3y)
=x×2-y×2-16x+12y
=-14x+10y
2(5a×2-2ab)-3(3a×2+4ab-b×2)
=20a-4ab-18a-12ab+6b
=2a-16ab+6b
添括号法则 :
1.如果括号前面是加号或乘号,加上括号后,括号里面的符号不变。
2.如果括号前面是减号或除号,加上括号后,括号里面的符号全部改为与其相反的符号。
3.添括号可以用去括号进行检验。
字母公式:
1.a+b+c=a+(b+c);
2.a-b-c=a-(b+c)
例:
(x+2y-3)(x-2y+3)
=[x+(2y-3)][x-(2y-3)]
=x2-(2y-3)2
=x2-(4y2-12y+9)
=x2-4y2+12y-9
(a+b+c)2
=[(a+b)+c]2
=(a+b)2+2(a+b)c+c2
=a2+2ab+b2+2ac+2bc+c2
= a2+B2+c2+2ab+2ac+2bc
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |