解方程:(1)x(x-2)=x(2)x2-x-1=0(用配方法)(3)9-|-3|+(2-1)0(4)(1327-323)3+18.-数学

首页 > 考试 > 数学 > 初中数学 > 绝对值/2019-02-12 / 加入收藏 / 阅读 [打印]

我们把形如叫做二次根式。
二次根式必须满足:
含有二次根号“”;
被开方数a必须是非负数。

确定二次根式中被开方数的取值范围:
要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

  • 考点名称:二次根式的加减乘除混合运算,二次根式的化简

    • 二次根式的加减乘除混合运算:
      顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
      ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
      ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
      ③运算结果是根式的,一般应表示为最简二次根式。
      二次根式的化简:
      先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

    • 二次根式混合运算掌握:
      1、确定运算顺序。
      2、灵活运用运算定律。
      3、正确使用乘法公式。
      4、大多数分母有理化要及时。
      5、在有些简便运算中也许可以约分,不要盲目有理化。
      6、字母运算时注意隐含条件和末尾括号的注明。
      7、提公因式时可以考虑提带根号的公因式。

      二次根式化简方法:
      二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
      分母有理化:
      分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
      (1)直接利用二次根式的运算法则:
      例:
      (2)利用平方差公式:
      例:
      (3)利用因式分解:
      例:(此题可运用待定系数法便于分子的分解)

      换元法(整体代入法):
      换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
      例:在根式中,令,即可得到
      原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

      提公因式法:
      例:计算


      巧构常值代入法:
      例:已知x2-3x+1=0,求的值。
      分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
      解:显然x≠0,x2-3x+1=0化为x+=3。
      原式==2.

    考点名称:实数的运算

    • 实数的运算:
      实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
      实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

      四则运算封闭性:
      实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

    • 实数的运算法则:
      1、加法法则:
      (1)同号两数相加,取相同的符号,并把它们的绝对值相加;
      (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
      可使用
      ①加法交换律:两个数相加,交换加数的位置,和不变;即:a+b=b+a;
      ②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变;即:(a+b)+c=a+(b+c)。

      2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)

      3、乘法法则:
      (1)两数相乘,同号取正,异号取负,并把绝对值相乘。
      (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
      (3)乘法可使用
      ①乘法交换律:两个数相乘,交换因数的位置,积不变,即:ab=ba;
      ②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即:(ab)c=a(bc);
      ③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)=ab+ac。

      4、除法法则:
      (1)两数相除,同号得正,异号得负,并把绝对值相除。
      (2)除以一个数等于乘以这个数的倒数。
      (3)0除以任何数都等于0,0不能做被除数。

      5、乘方:所表示的意义是n个a相乘,即an,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数,乘方与开方互为逆运算。

      实数的运算顺序:
      乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。